Selective Suppression of Endogenous Gene Expression Using RNAi in Schneider S2 Cells

Author(s):  
Yuichi Matsushima
2020 ◽  
Author(s):  
Deng Tan ◽  
Rui Chen ◽  
Yuejian Mo ◽  
Wei Xu ◽  
Xibin Lu ◽  
...  

AbstractFluctuation (‘noise’) in gene expression is critical for mammalian cellular processes. Numerous mechanisms contribute to its origins, yet large noises induced by single transcriptional activator species remain to be experimentally understood. Here, we combined the dynamic regulation of transcriptional activator binding, histone regulator inhibitors, and single-cell quantification of chromatin accessibility, mRNA, and protein to probe putative mechanisms. Using a light-induced expression system, we show that the transcriptional activator forms a positive feedback loop with histone acetyltransferases CBP/p300. It generates epigenetic bistability in H3K27ac, which contributes to large noise. Disable of the positive feedback loop by CBP/p300 and HDAC4/5 inhibitors also reduces heterogeneity in endogenous genes, suggesting a universal mechanism. We showed that the noise was reduced by pulse-wide modulation of transcriptional activator binding due to alternating the system between high and low monostable states. Our findings could provide a mechanism-based approach to modulate noise in synthetic and endogenous gene expressions.


2022 ◽  
Vol 8 ◽  
Author(s):  
Eric Schoger ◽  
Sara Lelek ◽  
Daniela Panáková ◽  
Laura Cecilia Zelarayán

Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1216 ◽  
Author(s):  
Juliette M. Delhove ◽  
Rajvinder Karda ◽  
Lorna M. FitzPatrick ◽  
Suzanne M.K. Buckley ◽  
Simon N. Waddington ◽  
...  

Bioluminescence imaging enables noninvasive quantification of luciferase reporter gene expression in transgenic tissues of living rodents. Luciferase transgene expression can be regulated by endogenous gene promoters after targeted knock-in of the reporter gene, usually within the first intron of the gene. Even using CRISPR/Cas9 mediated genome editing this can be a time consuming and costly process. The generation of germline transgenic (GLT) rodents by targeted genomic integration of a gene expression cassette in embryonic stem (ES) cells is commonplace but results in the wastage of large numbers of animals during colony generation, back-crossing and maintenance. Using a synthetic/truncated promoter-driven luciferase gene to study promoter activity in a given tissue or organ of a GLT also often results in unwanted background luciferase activity during whole-body bioluminescent imaging as every cell contains the reporter. We have developed somatotransgenic bioimaging; a method to generate tissue-restricted transcription factor activated luciferase reporter (TFAR) cassettes in rodents that substantially reduces the number of animals required for experimentation. Bespoke designed TFARs are delivered to newborn pups using viral vectors targeted to specific organs by tissue-tropic pseudotypes. Retention and proliferation of TFARs is facilitated by stem/progenitor cell transduction and immune tolerance to luciferase due to the naïve neonatal immune system. We have successfully applied both lentiviral and adeno-associated virus (AAV) vectors in longitudinal rodent studies, targeting TFARs to the liver and brain during normal development and in well-established disease models. Development of somatotransgenic animals has broad applicability to non-invasively determine mechanistic insights into homeostatic and disease states and assess toxicology and efficacy testing. Somatotransgenic bioimaging technology is superior to current whole-body, light-emitting transgenic models as it reduces the numbers of animals used by generating only the required number of animals. It is also a refinement over current technologies given the ability to use conscious, unrestrained animals.


1999 ◽  
Vol 27 (3) ◽  
pp. A125-A125
Author(s):  
I.C. Wood ◽  
M. Mistry ◽  
A. Roopra ◽  
N.J. Buckley

Development ◽  
1993 ◽  
Vol 118 (1) ◽  
pp. 71-82 ◽  
Author(s):  
R. Vogels ◽  
J. Charite ◽  
W. de Graaff ◽  
J. Deschamps

The Hox genes have been proved to be instrumental in establishing the positional identity of cells along the embryonic anteroposterior (A-P) axis. Studying the regulation of these genes is a first step toward elucidating the molecular basis of regionalization during embryogenesis. We report here on the identification of cis-acting elements controlling the expression of Hoxb-7 (Hox-2.3). We show that elements driving A-P restricted gene expression are located within the 3.5 kb proximal upstream sequences of the Hoxb-7 gene. A deletion analysis provides evidence for at least three cis-acting control elements upstream from Hoxb-7, and for cooperative interactions between some of these elements in generating the A-P restricted transgenic pattern. One element, conferring by itself Hox-like expression boundaries to the transgene, has been studied in more detail and found to act in an orientation-and promoter-dependent manner. Together the 3.5 kb sequences proximal to Hoxb-7 mediate A-P restricted Hoxb-7/lacZ gene expression in a domain showing rostral boundaries more posterior than those of Hoxb-7. The evolution throughout embryogenesis of the expression pattern of a transgene carrying these sequences has been analysed and shown to mimick that of the endogenous gene, except for a slight delay in the initial expression. We conclude that the transgenes that we tested, spanning a total of 27 kb genomic sequences, do not reproduce all the features of the Hoxb-7 expression pattern. The differences in expression between Hoxb-7 and the transgenes may reveal an aspect of the Hox regulation for which either remote cis-acting control elements and/or gene clustering is required. Additional features that may have favoured maintenance of clustered organisation during evolution are partial overlap of transcription units with the regulatory regions of the neighbouring genes, and cis-regulatory interactions between multiple Hox genes: not only do cis-acting control elements of the Hoxb-7 gene map in the 3′ untranslated sequences of the Hoxb-8 (Hox-2.4) gene, but our experiments suggest that Hoxb-7 control sequences modulate expression of the Hoxb-8 gene as well.


2019 ◽  
Author(s):  
Igor Mačinković ◽  
Ina Theofel ◽  
Tim Hundertmark ◽  
Kristina Kovač ◽  
Stephan Awe ◽  
...  

Abstract CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.


Sign in / Sign up

Export Citation Format

Share Document