Wire Rope Based Vibration Isolation Fixture For Road Transportation Of Heavy Defence Cargo

Author(s):  
Sanjay Chaudhuri ◽  
Bharat Kushwaha
Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 110-114
Author(s):  
Minas Minasyan ◽  
Armen Minasyan ◽  
Aung Thant

The paper notes that the structure of the wire rope is one of the most suitable materials used as a fire-resistant elastic element of vibration-insulating structures and fasteners (vibration isolators). To solve the problems of vibration isolation of marine diesel power plants in the framework of development and improvement of the shock absorption system, the original patented elastic supports with elastic elements made of steel wire rope in the form of a torus are presented. When commercially available vibration isolators do not meet the relevant requirements of vibration protection of a particular object, the solution to the existing problem can be achieved by using the proposed wire rope vibration isolators. The technical results of the original patented inventions are: - equal stiffness in the horizontal plane - ensuring the reliability and high vibration efficiency of protection against impacts and shocks. The proposed designs of vibration isolators are easy (technological in manufacturing) to manufacture and assemble, reliable and durable - the service life is 10 years or more. Vibration efficiency is confirmed by the vibration acceleration spectra before and after the vibration isolator of the damping system of the ship diesel-generator DGA-500 and the diesel unit with a 2H 8.5/11 engine and water brake on a common sub-frame. The three-year trial life of the DGA-500 and experimental studies on a diesel unit with a 2H 8.5/11 engine and water brake on a common sub-frame confirms their efficiency and effectiveness.


Author(s):  
Minas Armenakovich Minasyan ◽  
Aung Myo Thant ◽  
Armen Minasovich Minasyan

The paper considers the causes of increased vibration of four auxiliary diesel-generator sets of "Sulzer" 5АL25 type on board nine refrigerated vessels of B437 / 11 project after 15 years of operation. The proposed wide range of possible applications to address the problem of high vibration of diesel generators and motor vessels there were generally implemented upgraded turbocharger brackets, engine sub-frame and supporting spiral-rope vibration isolators in the shock absorption system of the diesel-generator. Four original patented technical solutions have been presented, among which one solution is implemented in 5AL25 diesel generator and 2H 8.5/11 diesel damping systems. There has been offered wide application both wire rope vibration isolators and combined isolators, in which elastic elements are made of nonflammable materials. Wire rope vibration isolators combine high bearing capacity (static loads within 1 N - 50 kN) with high elasticity under dynamic effects; their natural frequencies can drop to 2.5 Hz. Under the worst conditions 75% of the free moving weakens the impact to values that ensure the necessary safety of the object. Experience in designing vibration isolation systems allows to set the maximum range of loads within 15 - 25 g. The vibration isolators made of steel wire rope are practically not affected by the environment, they are made of stainless steel. They effectively operate at temperatures -200°C - +370°C in the presence of oil, dirt, sand, salt fog, etc. They usually have a service life comparable with the service life of the insulated object. Wire rope vibration isolators and combined vibration isolators can be used in all fields of modern technology: shipbuilding, power engineering, automotive, aviation and space industries, etc.


Author(s):  
P S Balaji ◽  
M E Rahman ◽  
Leblouba Moussa ◽  
H H Lau

Author(s):  
Bernd Tesche ◽  
Tobias Schilling

The objective of our work is to determine:a) whether both of the imaging methods (TEM, STM) yield comparable data andb) which method is better suited for a reliable structure analysis of microclusters smaller than 1.5 nm, where a deviation of the bulk structure is expected.The silver was evaporated in a bell-jar system (p 10−5 pa) and deposited onto a 6 nm thick amorphous carbon film and a freshly cleaved highly oriented pyrolytic graphite (HOPG).The average deposited Ag thickness is 0.1 nm, controlled by a quartz crystal microbalance at a deposition rate of 0.02 nm/sec. The high resolution TEM investigations (100 kV) were executed by a hollow-cone illumination (HCI). For the STM investigations a commercial STM was used. With special vibration isolation we achieved a resolution of 0.06 nm (inserted diffraction image in Fig. 1c). The carbon film shows the remarkable reduction in noise by using HCI (Fig. 1a). The HOPG substrate (Fig. 1b), cleaved in sheets thinner than 30 nm for the TEM investigations, shows the typical arrangement of a nearly perfect stacking order and varying degrees of rotational disorder (i.e. artificial single crystals). The STM image (Fig. 1c) demonstrates the high degree of order in HOPG with atomic resolution.


1983 ◽  
Author(s):  
C. W. Suggs ◽  
C. F. Abrams
Keyword(s):  

1882 ◽  
Vol 13 (328supp) ◽  
pp. 5226-5228
Author(s):  
William Thomas Henney Carrington
Keyword(s):  

2020 ◽  
Vol 64 (1-4) ◽  
pp. 549-556
Author(s):  
Yajun Luo ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
Xinong Zhang

The present work proposed an hourglass-type electromagnetic isolator with negative resistance (NR) shunt circuit to achieve the effective suppression of the micro-amplitude vibration response in various advanced instruments and equipment. By innovatively design of combining the displacement amplifier and the NR electromagnetic shunt circuit, the current new type of vibration isolator not only can effectively solve the problem of micro-amplitude vibration control, but also has significant electromechanical coupling effect, to obtain excellent vibration isolation performance. The design of the isolator and motion relationship is presented firstly. The electromechanical coupling dynamic model of the isolator is also given. Moreover, the optimal design of the NR electromagnetic shunt circuit and the stability analysis of the vibration isolation system are carried out. Finally, the simulation results about the transfer function and vibration responses demonstrated that the isolator has a significant isolation performance.


Sign in / Sign up

Export Citation Format

Share Document