Aseptic Injury to Epithelial Cells Alters Cell Surface Complement Regulation in a Tissue Specific Fashion

Author(s):  
Joshua M. Thurman ◽  
Brandon Renner ◽  
Kannan Kunchithapautham ◽  
V. Michael Holers ◽  
Bärbel Rohrer
1993 ◽  
Vol 264 (1) ◽  
pp. F149-F157 ◽  
Author(s):  
J. Gailit ◽  
D. Colflesh ◽  
I. Rabiner ◽  
J. Simone ◽  
M. S. Goligorsky

Tubular obstruction by detached renal tubular epithelial cells is a major cause of oliguria in acute renal failure. Viable renal tubular cells can be recovered from urine of patients with acute tubular necrosis, suggesting a possible defect in cell adhesion to the basement membrane. To study this process of epithelial cell desquamation in vitro, we investigated the effect of nonlethal oxidative stress on the integrin adhesion receptors of the primate kidney epithelial cell line BS-C-1. Morphological and functional studies of cell adhesion properties included the following: interference reflection microscopy, intravital confocal microscopy and immunocytochemistry, flow cytometric analysis of integrin receptor abundance, and cell-matrix attachment assay. High levels of the integrin subunits alpha 3, alpha v, and beta 1 were detected on the cell surface by fluorescence-activated cell sorting (FACS) analysis, as well as lower levels of alpha 1, alpha 2, alpha 4, alpha 5, alpha 6, and beta 3. Exposure of BS-C-1 cells to nonlethal oxidative stress resulted in the disruption of focal contacts, disappearance of talin from the basal cell surface, and in the redistribution of integrin alpha 3-subunits from predominantly basal location to the apical cell surface. As measured in a quantitative cell attachment assay, oxidative stress decreased BS-C-1 cell adhesion to type IV collagen, laminin, fibronectin, and vitronectin. Defective adhesion was not associated with a loss of alpha 3-, alpha 4-, or alpha v-integrin subunits from the cell surface.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 361 (2) ◽  
pp. 203-209 ◽  
Author(s):  
Silvia GINÉS ◽  
Marta MARIÑO ◽  
Josefa MALLOL ◽  
Enric I. CANELA ◽  
Chikao MORIMOTO ◽  
...  

The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA—CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50–70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA—CD26 interaction in the lymphocyte—epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA—CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA—CD26 interaction on the cell surface has a role in lymphocyte—epithelial cell adhesion.


Development ◽  
1976 ◽  
Vol 36 (2) ◽  
pp. 225-245
Author(s):  
Robert M. Greene ◽  
Robert M. Pratt

Research on development of the secondary palate has, in the past, dealt primarily with morphological aspects of shelf elevation and fusion. The many factors thought to be involved in palatal elevation, such as fetal neuromuscular activity and growth of the cranial base and mandible, as well as production of extracellular matrix and contractile elements in the palate, are mostly based on gross, light microscopic, morphometric or histochemical observations. Recently, more biochemical procedures have been utilized to describe palatal shelf elevation. Although these studies strongly suggest that palatal extracellular matrix plays a major role in shelf movement, interpretation of these data remains difficult owing to the complexity of tissue interactions involved in craniofacial development. Shelf elevation does not appear to involve a single motive factor, but rather a coordinated interaction of all of the abovementioned developmental events. Further analysis of mechanisms of shelf elevation requires development of new, and refinement of existing, in vitro procedures. A system that enables one to examine shelf elevation in vitro would allow more meaningful analysis of the relative importance of the various components in shelf movement. Much more is known about fusion of the palatal shelves, owing in large part to in vitro studies. Fusion of the apposing shelves, both in vivo and in vitro, is dependent upon adhesion and cell death of the midline epithelial cells. Adhesion between apposing epithelial surfaces appears to involve epithelial cell surface macromolecules. Further analysis of palatal epithelial adhesion should be directed towards characterization of those cell surface components responsible for this adhesive interaction. Midline epithelial cells cease DNA synthesis 24–36 h before shelf elevation and contact, become active in the synthesis of cell surface glycoproteins, and subsequently manifest morphological signs of necrosis. Death of the midline epithelial cells is thought to involve a programmed, lysosomal-mediated autolysis. Information regarding the appearance, distribution and quantitation of epithelial hydrolytic enzymes is needed. The control mechanisms which regulate adhesiveness and cell death in the palatal epithelium are not fully understood. Although palatal epithelial-mesenchymal recombination experiments have demonstrated a close relationship between the underlying mesenchyme and the differentiating epithelium, the molecular mechanism of interaction remains unclear. Recently cyclic nucleotides have been implicated as possible mediators of palatal epithelial differentiation. The developing secondary palate therefore offers a system whereby one can probe a variety of developmental phenomena. Cellular adhesion, programmed cell death and epithelial- mesenchymal interactions are all amenable to both morphological as well as bio- chemical analysis. Although research in the field of secondary palate development has been extensive, there still remain many provocative questions relating to normal development of this structure.


1984 ◽  
Vol 33 (2) ◽  
pp. 268-281 ◽  
Author(s):  
Ann M. Carroll ◽  
Michael Zalutsky ◽  
Sam Schatten ◽  
Atul Bhan ◽  
Linda L. Perry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document