Challenging the Assumptions in Estimating Protein Fractional Synthesis Rate Using a Model of Rodent Protein Turnover

Author(s):  
Heidi A. Johnson ◽  
Chris C. Calvert ◽  
Kirk C. Klasing
2019 ◽  
Vol 157 (9-10) ◽  
pp. 701-710
Author(s):  
Gonzalo Cantalapiedra-Hijar ◽  
Hélène Fouillet ◽  
Céline Chantelauze ◽  
Nadezda Khodorova ◽  
Lahlou Bahloul ◽  
...  

AbstractProtein turnover is an energy-consuming process that is essential for ensuring the maintenance of living organisms. Gold standard methods for whole-body protein turnover (WBPT) measurement have inherent drawbacks precluding their generalization for large farm animals and use during long periods. Here, we proposed a non-invasive proxy for the WBPT over a long period of time and in a large number of beef cattle. The proxy is based on the rate at which urine-N and plasma proteins are progressively depleted in terms of 15N after a slight decrease in the isotopic N composition of the diet (i.e. diet switch). We aimed to test the ability of this proxy to adequately discriminate the WBPT of 36 growing-fattening young bulls assigned to different dietary treatments known to impact the WBPT rate, with different protein contents (normal v. high) and amino acid profiles (balanced v. unbalanced in methionine). The 15N depletion rate found in plasma proteins represented their fractional synthesis rate, whereas the slow depletion rate found in urine was interpreted as a proxy of the WBPT. The proxy tested in urine suggested different WBPT values between the normal- and high-protein diets but not between the balanced and unbalanced methionine diets. In contrast, the proxy tested in plasma indicated that both dietary conditions affected the fractional synthesis rate of plasma proteins. We considered that the rate at which urine is progressively 15N-depleted following an isotopic diet switch could be proposed as a non-invasive proxy of the WBPT rate in large farm animals.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1750-1750
Author(s):  
Kristina Cross ◽  
Jorge Granados ◽  
Gabriella Ten Have ◽  
John Thaden ◽  
J Timothy Lightfoot ◽  
...  

Abstract Objectives With the rise in physical inactivity and its related diseases, it is necessary to understand the mechanisms involved in physical activity regulation. Scientists have explored physical activity regulation by investigating various physiological mechanisms involving hormones, neurotransmitters, and genetics; however, little is known about the role of metabolism on physical activity level. We hypothesize that protein turnover in specific organs like the muscle is higher in mice previously exhibiting high physical activity levels, as a mechanism to adapt to the increased demand. Therefore, we studied protein fractional synthesis rate (FSR) in tissues of inherently high and low active mice. Methods In order to study protein FSR of various organs, we assessed 12-week-old male inherently low-active (LA) mice (n = 23, lean body mass: 21.0 ± 1.1 g, C3H/HeJ strain) and high active (HA) mice (n = 20, lean body mass: 22.5 ± 1.3, C57L/J strain). One day before tissue collection, a D2O bolus was administered via intraperitoneal injection, and mice were provided D2O enriched drinking water to enrich the total body water to about 5% D2O. Eleven tissues (kidney, heart, lung, muscle, fat, jejunum, ileum, liver, brain, skin, and bone) were collected and analyzed for enrichment of alanine in the intracellular and protein-bound pool (LC-MS/MS). FSR was calculated as -ln(1-enrichment) as fraction per day. Data are mean ± SE (unpaired t-test: GraphPad Prism 8.2). Results We did not find significant differences between protein FSR of HA and LA mice in any measured organ. Example: Protein FSR (fraction/day): muscle (LA: 0.0326±-0.0026, HA: 0.0331 ± 0.0018, P = 0.8673), liver (0.3568 ± 0.0219, 0.3499 ± 0.0217, P = 0.8263), brain (0.0981 ± 0.0056, 0.1041 ± 0.0063, P = 0.4758). Conclusions The observed lack of significant differences in high and low-active mice suggests that differences in specific organ tissue protein turnover may not be a mechanism regulating inherent physical activity level. Since protein turnover is representative of the ability to adapt through upregulation and downregulation of metabolic processes, these results show that high-active mice are inherently no more equipped for metabolic regulation than the low active mice. Funding Sources Sydney and J.L. Huffines Institute for Sports Medicine, Human Performance Student Research Grant and CTRAL Grant.


Metabolism ◽  
2014 ◽  
Vol 63 (12) ◽  
pp. 1562-1567 ◽  
Author(s):  
Demidmaa Tuvdendorj ◽  
David L. Chinkes ◽  
John Bahadorani ◽  
Xiao-jun Zhang ◽  
Melinda Sheffield-Moore ◽  
...  

1998 ◽  
Vol 9 (8) ◽  
pp. 1474-1481
Author(s):  
M G De Sain-Van Der Velden ◽  
D J Reijngoud ◽  
G A Kaysen ◽  
M M Gadellaa ◽  
H Voorbij ◽  
...  

In patients with the nephrotic syndrome, markedly increased levels of lipoprotein(a) (Lp(a)) concentration have been frequently reported, and it has been suggested that this may contribute to the increased cardiovascular risk in these patients. The mechanism, however, is not clear. In the present study, in vivo fractional synthesis rate of Lp(a) was measured using incorporation of the stable isotope 13C valine. Under steady-state conditions, fractional synthesis rate equals fractional catabolic rate (FCR). FCR of Lp(a) was estimated in five patients with the nephrotic syndrome and compared with five control subjects. The mean plasma Lp(a) concentration in the patients (1749+/-612 mg/L) was higher than in control subjects (553+/-96 mg/L). Two patients were heterozygous for apolipoprotein(a) (range, 19 to 30 kringle IV domains), whereas all control subjects were each homozygous with regard to apolipoprotein(a) phenotype (range, 18 to 28 kringle IV domains). The FCR of Lp(a) was comparable between control subjects (0.072+/-0.032 pools/d) and patients (0.064+/-0.029 pools/d) despite the wide variance in plasma concentration. This suggests that differences in Lp(a) levels are caused by differences in synthesis rate. Indeed, the absolute synthetic rate of Lp(a) correlated directly with plasma Lp(a) concentration (P < 0.0001) in all subjects. The present results demonstrate that increased synthesis, rather than decreased catabolism, causes elevated plasma Lp(a) concentrations in the nephrotic syndrome.


2020 ◽  
Vol 46 (1) ◽  
pp. 83-88
Author(s):  
N. B. Gubergrits ◽  
N.V. Byelyayeva ◽  
T. L. Mozhyna ◽  
G. M. Lukashevich ◽  
P. G. Fomenko

After the discovery of the method of ursodeoxycholic acid’s (UDCA) synthesis and the publication of evidence confirming its ability to reduce the lithogenic properties of bile, active clinical use of UDCA began in the world. This drug, which has pleiotropic effect (choleretic, cytoprotective, immunomodulatory, antiapoptic, litholytic, hypocholesterolemic), has proven its effectiveness in the treatment various diseases: primary biliary cholangitis, intrahepatic cholestasis of pregnancy, gallstone disease. Being a tertiary bile acid, UDCA stimulates bile acid synthesis by reducing the circulating fibroblast growth factor 19 and inhibiting the activation of the farnesoid X-receptor (FXR), which leads to the induction of cholesterol-7α-hydroxylase, a key enzyme in the synthesis of bile acid de novo, mediating the conversion of cholesterol into bile acids. Changes in the formation of bile acids and cholesterol while taking UDCA intake is accompanied by activation of the main enzyme of cholesterol synthesis - 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under the influence of UDCA the activity of stearoyl-Coa desaturase (SCD) in visceral white adipose tissue increases. According to studies conducted in 2019, UDCA improves lipid metabolism by regulating the activity of the ACT/mTOR signaling pathway, reduces the synthesis of cholesterol, decreases the fractional synthesis rate of cholesterol and the fractional synthesis rate of triglycerides. It has been proved that UDCA is accompanied by a decrease in the level of total cholesterol and low density lipoprotein cholesterol.


2002 ◽  
Vol 103 (5) ◽  
pp. 525-531 ◽  
Author(s):  
Hans BARLE ◽  
Anna JANUSZKIEWICZ ◽  
Lars HÅLLSTRÖM ◽  
Pia ESSÉN ◽  
Margaret A. MCNURLAN ◽  
...  

In order to investigate the immediate (i.e. within 3h) response of albumin synthesis to the administration of endotoxin, as a model of a moderate and well controlled catabolic insult, two measurements employing L-[2H5]phenylalanine were performed in 16 volunteers. One group (n = 8) received an intravenous injection of endotoxin (4ng/kg; lot EC-6) immediately after the first measurement of albumin synthesis, whereas the other group received saline. A second measurement was initiated 1h later. In the endotoxin group, the fractional synthesis rate of albumin was 6.9±0.6%/day (mean±S.D.) in the first measurement. In the second measurement, a significant increase was observed (9.6±1.2%/day; P<0.001). The corresponding values in the control group were were 6.6±0.6%/day and 7.0±0.6%/day respectively (not significant compared with first measurement and P<0.001 compared with the second measurement in the endotoxin group). The absolute synthesis rates of albumin were 148±35 and 201±49mg·kg-1·day-1 before and after endotoxin (P<0.01). In the control group, the corresponding values were 131±21 and 132±20mg·kg-1·day-1 (not significant compared with the first measurement and P<0.01 compared with the second measurement in the endotoxin group). In conclusion, these results indicate that albumin synthesis increases in the very early phase after a catabolic insult, as represented by the administration of endotoxin.


2000 ◽  
Vol 84 (3) ◽  
pp. 275-284 ◽  
Author(s):  
G. E. Lobley ◽  
K. D. Sinclair ◽  
C. M. Grant ◽  
L. Miller ◽  
D. Mantle ◽  
...  

Eighteen pure-bred steers (live weight 350 kg) from each of two breeds, Aberdeen Angus (AA) and Charolais (CH), were split into three equal groups (six animals each) and offered three planes of nutrition during a 20-week period. The same ration formulation was offered to all animals with amounts adjusted at 3-week intervals to give predicted average weight gains of either 1·0 kg/d (M/M group) or 1·4 kg/d (H/H group). The remaining group (M/H) were offered the same amount of ration as the M/M group until 10 weeks before slaughter when the ration was increased to H. Data on animal performance, carcass characteristics and fibre-type composition in skeletal muscle are presented elsewhere (; ). On three occasions (17, 10 and 2 weeks before slaughter) the animals were transferred to metabolism stalls for 1 week, during which total urine collection for quantification of Nτ-methylhistidine (Nτ-MeH) elimination was performed for 4 d. On the last day, animals were infused for 11 h with [2H5] phenylalanine with frequent blood sampling (to allow determination of whole-body phenylalanine flux) followed by biopsies from m. longissimus lumborum and m. vastus lateralis to determine the fractional synthesis rate of mixed muscle protein. For both breeds, the absolute amount of Nτ-MeH eliminated increased with animal age or weight (P < 0·001) and was significantly greater for CH steers, at all intake comparisons, than for AA (P < 0·001). Estimates of fractional muscle breakdown rate (FBR; calculated from Nτ-MeH elimination and based on skeletal muscle as a fixed fraction of live weight) showed an age (or weight) decline for M/M and H/H groups of both breeds (P < 0·001). FBR was greater for the H/H group (P = 0·044). The M/H group also showed a lower FBR for the first two measurement periods (both at M intake) but increased when intake was raised to H. When allowance was made for differences in lean content (calculated from fat scores and eye muscle area in carcasses at the end of period 3), there were significant differences in muscle FBR with intake (P = 0·012) but not between breed. Whole-body protein flux (WBPF; g/d) based on plasma phenylalanine kinetics increased with age or weight (P < 0·001) and was similar between breeds. The WBPF was lower for M/M compared with H/H (P < 0·001) based on either total or per kg live weight0·75. Muscle protein fractional synthesis rate (FSR) declined with age for both breeds and tended to be higher at H/H compared with M intakes (intake × period effects, P < 0·05). Changing intake from M to H caused a significant increase (P < 0·001) in FSR. The FSR values for AA were significantly greater than for CH at comparable ages (P = 0·044). Although FSR and FBR responded to nutrition, these changes in protein metabolism were not reflected in differences in meat eating quality (Sinclair et al. 2000).


1992 ◽  
Vol 282 (1) ◽  
pp. 107-113 ◽  
Author(s):  
K K Tsuboi ◽  
L K Kwong ◽  
P Sunshine ◽  
R O Castillo

The maturational decline in lactase-phlorizin hydrolase (LPH) activity was studied in groups of young rats ranging from suckling to early post-weaned states. Associated maturational increases in sucrase-isomaltase (SI) and maltase-glucoamylase (MG) activities were also examined as a comparison. Over this time period changes in cellular concentrations of the three enzymes were observed, reflecting corresponding changes in enzyme activities. Synthesis patterns accompanying these maturational changes in concentration were examined using labelled leucine as a marker. Synthesis of LPH was found to be maintained at constant rates independent of the maturation-associated decline in its concentration, whereas the increases in cellular concentrations of SI and MG were due to accelerated synthesis of the enzyme. Turnover of LPH, based on both the fractional synthesis rate and the disappearance rate of labelled leucine from prelabelled LPH pools, was increased in a quantitatively similar way to the decline in LPH concentration. These findings are consistent with our earlier proposal that the maturational decline of LPH occurs because of accelerated turnover, without a decrease in its rate of synthesis.


1981 ◽  
Vol 241 (5) ◽  
pp. H708-H713 ◽  
Author(s):  
C. M. Bonnin ◽  
M. P. Sparrow ◽  
R. R. Taylor

The fractional synthesis rate of collagen (the percent of total ventricular collagen synthesized in one day) was measured in the hearts of normal dogs and those with pulmonary artery stenosis using a continuous 6-h intravenous infusion of [14C]proline. The fractional synthesis rate in normal ventricles was slow, 0.56%/day, and it increased eightfold to 4.8%/day in the hypertrophying right ventricle after 5 days. After 12 and 28 days the synthesis rate was still significantly greater than in the control left ventricle, being 2.6 and 1.3%/day, respectively. However, the synthesis rate of noncollagen protein was significantly greater than normal at 5 days only. The collagen content (expressed as a mass fraction) of the right ventricle decreased over the first 12 days of hypertrophy but by 28 days was restored to the normal right ventricular value of 9.6 mg/g wet wt tissue. The total amount of collagen in the hypertrophied ventricle calculated from the synthesis rates was in accord with that measured chemically. In normal dogs the collage content of the right ventricle was greater than that of the left, and the epicardium contributed substantially to the total collagen in the ventricular walls.


Sign in / Sign up

Export Citation Format

Share Document