A Case Study of Strategic Induction: the Roman Numerals Data Set

Author(s):  
David McSherry
Keyword(s):  
Author(s):  
Michael W. Pratt ◽  
M. Kyle Matsuba

Chapter 7 begins with an overview of Erikson’s ideas about intimacy and its place in the life cycle, followed by a summary of Bowlby and Ainsworth’s attachment theory framework and its relation to family development. The authors review existing longitudinal research on the development of family relationships in adolescence and emerging adulthood, focusing on evidence with regard to links to McAdams and Pals’ personality model. They discuss the evidence, both questionnaire and narrative, from the Futures Study data set on family relationships, including emerging adults’ relations with parents and, separately, with grandparents, as well as their anticipations of their own parenthood. As a way of illustrating the key personality concepts from this family chapter, the authors end with a case study of Jane Fonda in youth and her father, Henry Fonda, to illustrate these issues through the lives of a 20th-century Hollywood dynasty of actors.


Author(s):  
Michael W. Pratt ◽  
M. Kyle Matsuba

Chapter 6 reviews research on the topic of vocational/occupational development in relation to the McAdams and Pals tripartite personality framework of traits, goals, and life stories. Distinctions between types of motivations for the work role (as a job, career, or calling) are particularly highlighted. The authors then turn to research from the Futures Study on work motivations and their links to personality traits, identity, generativity, and the life story, drawing on analyses and quotes from the data set. To illustrate the key concepts from this vocation chapter, the authors end with a case study on Charles Darwin’s pivotal turning point, his round-the-world voyage as naturalist for the HMS Beagle. Darwin was an emerging adult in his 20s at the time, and we highlight the role of this journey as a turning point in his adult vocational development.


2003 ◽  
Vol 42 (05) ◽  
pp. 564-571 ◽  
Author(s):  
M. Schumacher ◽  
E. Graf ◽  
T. Gerds

Summary Objectives: A lack of generally applicable tools for the assessment of predictions for survival data has to be recognized. Prediction error curves based on the Brier score that have been suggested as a sensible approach are illustrated by means of a case study. Methods: The concept of predictions made in terms of conditional survival probabilities given the patient’s covariates is introduced. Such predictions are derived from various statistical models for survival data including artificial neural networks. The idea of how the prediction error of a prognostic classification scheme can be followed over time is illustrated with the data of two studies on the prognosis of node positive breast cancer patients, one of them serving as an independent test data set. Results and Conclusions: The Brier score as a function of time is shown to be a valuable tool for assessing the predictive performance of prognostic classification schemes for survival data incorporating censored observations. Comparison with the prediction based on the pooled Kaplan Meier estimator yields a benchmark value for any classification scheme incorporating patient’s covariate measurements. The problem of an overoptimistic assessment of prediction error caused by data-driven modelling as it is, for example, done with artificial neural nets can be circumvented by an assessment in an independent test data set.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. F25-F34 ◽  
Author(s):  
Benoit Tournerie ◽  
Michel Chouteau ◽  
Denis Marcotte

We present and test a new method to correct for the static shift affecting magnetotelluric (MT) apparent resistivity sounding curves. We use geostatistical analysis of apparent resistivity and phase data for selected periods. For each period, we first estimate and model the experimental variograms and cross variogram between phase and apparent resistivity. We then use the geostatistical model to estimate, by cokriging, the corrected apparent resistivities using the measured phases and apparent resistivities. The static shift factor is obtained as the difference between the logarithm of the corrected and measured apparent resistivities. We retain as final static shift estimates the ones for the period displaying the best correlation with the estimates at all periods. We present a 3D synthetic case study showing that the static shift is retrieved quite precisely when the static shift factors are uniformly distributed around zero. If the static shift distribution has a nonzero mean, we obtained best results when an apparent resistivity data subset can be identified a priori as unaffected by static shift and cokriging is done using only this subset. The method has been successfully tested on the synthetic COPROD-2S2 2D MT data set and on a 3D-survey data set from Las Cañadas Caldera (Tenerife, Canary Islands) severely affected by static shift.


2010 ◽  
Vol 26-28 ◽  
pp. 620-624 ◽  
Author(s):  
Zhan Wei Du ◽  
Yong Jian Yang ◽  
Yong Xiong Sun ◽  
Chi Jun Zhang ◽  
Tuan Liang Li

This paper presents a modified Ant Colony Algorithm(ACA) called route-update ant colony algorithm(RUACA). The research attention is focused on improving the computational efficiency in the TSP problem. A new impact factor is introduced and proved to be effective for reducing the convergence time in the RUACA performance. In order to assess the RUACA performance, a simply supported data set of cities, which was taken as the source data in previous research using traditional ACA and genetic algorithm(GA), is chosen as a benchmark case study. Comparing with the ACA and GA results, it is shown that the presented RUACA has successfully solved the TSP problem. The results of the proposed algorithm are found to be satisfactory.


2021 ◽  
Vol 11 (15) ◽  
pp. 6723
Author(s):  
Ariana Raluca Hategan ◽  
Romulus Puscas ◽  
Gabriela Cristea ◽  
Adriana Dehelean ◽  
Francois Guyon ◽  
...  

The present work aims to test the potential of the application of Artificial Neural Networks (ANNs) for food authentication. For this purpose, honey was chosen as the working matrix. The samples were originated from two countries: Romania (50) and France (53), having as floral origins: acacia, linden, honeydew, colza, galium verum, coriander, sunflower, thyme, raspberry, lavender and chestnut. The ANNs were built on the isotope and elemental content of the investigated honey samples. This approach conducted to the development of a prediction model for geographical recognition with an accuracy of 96%. Alongside this work, distinct models were developed and tested, with the aim of identifying the most suitable configurations for this application. In this regard, improvements have been continuously performed; the most important of them consisted in overcoming the unwanted phenomenon of over-fitting, observed for the training data set. This was achieved by identifying appropriate values for the number of iterations over the training data and for the size and number of the hidden layers and by introducing of a dropout layer in the configuration of the neural structure. As a conclusion, ANNs can be successfully applied in food authenticity control, but with a degree of caution with respect to the “over optimization” of the correct classification percentage for the training sample set, which can lead to an over-fitted model.


Author(s):  
Amin Moniri-Morad ◽  
Mohammad Pourgol-Mohammad ◽  
Hamid Aghababaei ◽  
Javad Sattarvand

Operational heterogeneity and harsh environment lead to major variations in production system performance and safety. Traditional probabilistic model is dealt with time-to-event data analysis, which does not have the capability of quantifying and simulation of these types of complexities. This research proposes an integrated methodology for analyzing the impact of dominant explanatory variables on the complex system reliability. A flexible parametric proportional hazards model is developed by focusing on standard parametric Cox regression model for reliability evaluation in complex systems. To achieve this, natural cubic splines are utilized to create a smooth and flexible baseline hazards function where the standard parametric distribution functions do not fit into the failure data set. A real case study is considered to evaluate the reliability for multi-component mechanical systems such as mining equipment. Different operational and environmental explanatory variables are chosen for the analysis process. Research findings revealed that precise estimation of the baseline hazards function is a major part of the reliability evaluation in heterogeneous environment. It is concluded that an appropriate maintenance strategy potentially mitigate the equipment failure intensity.


2014 ◽  
Vol 21 (1) ◽  
pp. 111-126 ◽  
Author(s):  
Palaneeswaran Ekambaram ◽  
Peter E.D. Love ◽  
Mohan M. Kumaraswamy ◽  
Thomas S.T. Ng

Purpose – Rework is an endemic problem in construction projects and has been identified as being a significant factor contributing cost and schedule overruns. Causal ascription is necessary to obtain knowledge about the underlying nature of rework so that appropriate prevention mechanisms can be put in place. The paper aims to discuss these issues. Design/methodology/approach – Using a supervised questionnaire survey and case-study interviews, data from 112 building and engineering projects about the sources and causes of rework in projects were obtained. A multivariate exploration was conducted to examine the underlying relationships between rework variables. Findings – The analysis revealed that there was a significant difference between rework causes for building and civil engineering projects. The set of associations explored in the analyses will be useful to develop a generic causal model to examine the quantitative impact of rework on project performance so that appropriate prevention strategies can be identified and developed. Research limitations/implications – The limitations include: small data set (112 projects), which include 75 from building and 37 from civil engineering projects. Practical implications – Meaningful insights into the rework occurrences in construction projects will pave pathways for rational mitigation and effective management measures. Originality/value – To date there has been limited empirical research that has sought to determine the causal ascription of rework, particularly in Hong Kong.


Sign in / Sign up

Export Citation Format

Share Document