The Impact of Domestication on Red Deer Immunity and Disease Resistance

1992 ◽  
pp. 120-125 ◽  
Author(s):  
J. Frank ◽  
T. Griffin ◽  
Anthony J. Thomson ◽  
John P. Cross ◽  
Glenn S. Buchan ◽  
...  
2017 ◽  
Vol 7 (4) ◽  
pp. 65-72
Author(s):  
V. N. Shmagol' ◽  
V. L. Yarysh ◽  
S. P. Ivanov ◽  
V. I. Maltsev

<p>The long-term population dynamics of the red deer (<em>Cervus elaphus</em> L.) and European roe deer (<em>Capreolus</em> <em>capreolus</em> L.) at the mountain and forest zone of Crimea during 1980-2017 is presented. Fluctuations in numbers of both species are cyclical and partly synchronous. Period of oscillations in the population of red deer is about 25 years, the average duration of the oscillation period of number of roe deer is 12.3 years. During the fluctuations in the number the increasing and fall in population number of the red deer had been as 26-47 %, and roe deer – as 22-34 %. Basing on the dada obtained we have assumed that together with large-scale cycles of fluctuations in population number of both red deer and roe deer the short cycles of fluctuations in the number of these species with period from 3.5 to 7.5 years take place. Significant differences of the parameters of cyclical fluctuations in the number of roe deer at some sites of the Mountainous Crimea: breaches of synchronicity, as well as significant differences in the duration of cycles are revealed. The greatest deviations from the average values of parameters of long-term dynamics of the number of roe deer in Crimea are noted for groups of this species at two protected areas. At the Crimean Nature Reserve the cycle time of fluctuations of the numbers of roe deer was 18 years. At the Karadag Nature Reserve since 1976 we can see an exponential growth in number of roe deer that is continued up to the present time. By 2016 the number of roe deer reached 750 individuals at a density of 437 animals per 1 thousand ha. Peculiarity of dynamics of number of roe deer at some sites proves the existence in the mountain forest of Crimea several relatively isolated groups of deer. We assumed that "island" location of the Crimean populations of red deer and European roe deer, their relatively little number and influence of permanent extreme factors of both natural and anthropogenic origination have contributed to a mechanism of survival of these populations. The elements of such a mechanism include the following features of long-term dynamics of the population: the reduction in the period of cyclic population fluctuations, while maintaining their amplitude and the appearance of additional small cycles, providing more flexible response of the population to the impact of both negative and positive environmental factors. From the totality of the weather conditions for the Crimean population of roe deer the recurring periods of increases and downs in the annual precipitation amount may have relevance. There was a trend of increase in the roe deer population during periods of increasing annual precipitation.</p>


2015 ◽  
Vol 11 (3) ◽  
pp. 20150012 ◽  
Author(s):  
Kenneth Wilson ◽  
Robert I. Graham

There is an increasing appreciation of the importance of transgenerational effects on offspring fitness, including in relation to immune function and disease resistance. Here, we assess the impact of parental rearing density on offspring resistance to viral challenge in an insect species expressing density-dependent prophylaxis (DDP); i.e. the adaptive increase in resistance or tolerance to pathogen infection in response to crowding. We quantified survival rates in larvae of the cotton leafworm ( Spodoptera littoralis ) from either gregarious- or solitary-reared parents following challenge with the baculovirus S. littoralis nucleopolyhedrovirus. Larvae from both the parental and offspring generations exhibited DDP, with gregarious-reared larvae having higher survival rates post-challenge than solitary-reared larvae. Within each of these categories, however, survival following infection was lower in those larvae from gregarious-reared parents than those from solitary-reared, consistent with a transgenerational cost of DDP immune upregulation. This observation demonstrates that crowding influences lepidopteran disease resistance over multiple generations, with potential implications for the dynamics of host–pathogen interactions.


2002 ◽  
Vol 2002 ◽  
pp. 55-55 ◽  
Author(s):  
S. C. Bishop ◽  
K. Mackenzie

Disease resistance is often cited as the major challenge facing animal geneticists, with much effort directed towards finding disease-resistance genes. The PrP gene controlling resistance of sheep to scrapie is such an example. To design effective breeding strategies utilising such genes, it is critical to understand the impact that these genes have upon disease transmission. For example, it has been shown that it is not necessary to make all animals genetically resistant in order to protect the population as a whole from epidemics (MacKenzie and Bishop, 1999). Additionally, concern is often voiced over the possibility of the pathogen co-evolving with the host, reducing the utility of the genes. By combining animal breeding and epidemiology theory, this study derives strategies for using disease resistance genes to control disease transmission, and considers the co-evolution risks with such strategies.


2008 ◽  
Vol 38 (4) ◽  
pp. 677-684 ◽  
Author(s):  
Nick Gould ◽  
Tony Reglinski ◽  
Mike Spiers ◽  
Joe T. Taylor

Methyl jasmonate (MeJA) can induce defence responses in plants to pathogen attack, but it can also have consequences for plant growth. The transient effects of exogenous MeJA treatment on the resistance of Monterey pine ( Pinus radiata D. Don) seedlings to Diplodia pinea (Desm.) Kickx. and some physiological parameters affecting the impact of treatment on seedling growth were investigated. Following foliar application of 4.5 mmol·L–1 MeJA, disease resistance was greatest 1–2 weeks after treatment and declined with time thereafter. Elevated disease resistance was accompanied by a reduction in seedling growth rate the second week following MeJA treatment. Thereafter, seedling growth rate recovered and exceeded that of the control seedlings 4–5 weeks after MeJA treatment. Within hours of MeJA treatment, reductions in both the capacity of photosystem II and transpiration rate were observed, resulting in a concomitant reduction in net CO2 uptake rate. The slight reduction in transpiration rate was also associated with an increase in needle water potential. Longer term measurements showed no effect of MeJA on photosynthetic rate, transpiration rate, chlorophyll content, or shoot water potential and thus could not account for the elevated growth rate observed 4–5 weeks after treatment.


2015 ◽  
Vol 8 (3) ◽  
pp. 437-447 ◽  
Author(s):  
Oliver Moore ◽  
Michael J. Crawley
Keyword(s):  
Red Deer ◽  

2019 ◽  
Vol 29 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Derald Harp ◽  
Gaye Hammond ◽  
David C. Zlesak ◽  
Greg Church ◽  
Mark Chamblee ◽  
...  

Landscaping today involves the struggle to balance aesthetically pleasing plants while minimizing the impact on the environment, reducing water usage, decreasing fertilizer use, and eliminating or significantly reducing pesticide usage. Roses (Rosa sp.), although seen as challenging plants, remain the most popular flowering shrub in the United States. The identification of new cultivars that combine beauty, pest and disease resistance, and drought tolerance are important to Texas landscapes. Sixty roses were assessed over a 3-year period to determine flowering, drought tolerance, disease resistance, and overall landscape performance in minimal-input gardens in north central Texas. Atypical weather during the study had a significant impact on performance. A 2-year drought (2010–11) was accompanied by the hottest summer on record (2011), which included a record number of days of at least 100 °F or higher. As a result, supplemental irrigation was provided three times both summers. Roses generally fared well under these conditions and survived the drought. Flowering was most abundant during the spring and fall, and it was least abundant in the summer. Powdery mildew [PM (Sphaerotheca pannosa var. rosae)] was a minor problem. Nine of 60 cultivars developed no visible symptoms of PM during the study. Most PM occurred in Spring 2010, with very little found after June; none was found in 2011. Black spot [BS (Diplocarpon rosae)] was serious for some cultivars, but most were BS-free; RADrazz (Knock Out®) and Lady Banks White had no observed BS during the study. BS occurred mostly in May, June, and November. Overall landscape performance ratings were high, with 23 cultivars having a mean landscape performance rating equal to or better than the Belinda’s Dream standard. The best-performing cultivars were RADrazz (Knock Out), RADcon (Pink Knock Out®), RADyod (Blushing Knock Out®), WEKcisbaco (Home Run®), and Alister Stella Gray. This study was able to identify many other highly performing roses in north central Texas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haolang Liu ◽  
Yuqi Qi ◽  
Jihong Wang ◽  
Yan Jiang ◽  
Mingxin Geng

AbstractThe soil-borne disease caused by Fusarium graminearum seriously affects the corn quality. Straw can greatly improve soil quality, but the effect is limited by its nature and environmental factors. This study explored the impact of straw-JF-1(biocontrol bacteria) combination on soil environment and soil disease resistance. The results showed that the combined treatment increased the proportion of soil large and small macro-aggregates by 22.50 and 3.84%, with soil organic carbon (SOC) content by 16.18 and 16.95%, respectively. Compared to treatment with returning straw to the field alone, the straw-JF-1 combination increased the soil content of humic acid, fulvic acid, and humin by 14.06, 5.50, and 4.37%, respectively. Moreover, A metagenomics showed that returning straw to the field alone increased the abundance of disease-causing fungi (Fusarium and Plectosphaerella), however, the straw-JF-1 combination significantly suppressed this phenomenon as well as improved the abundance of probiotic microorganisms such as Sphingomonas, Mortierella, Bacillus, and Pseudomonas. Functional analysis indicated that the combination of straw and JF-1 improved some bacterial functions, including inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperones and function unknown, fungal functions associated with plant and animal pathogens were effectively inhibited. Pot experiments showed that the straw-JF-1 combination effectively inhibited the Fusarium graminearum induced damage to maize seedlings. Therefore, the combination of straw and JF-1 could be a practical method for soil management.


Sign in / Sign up

Export Citation Format

Share Document