scholarly journals Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haolang Liu ◽  
Yuqi Qi ◽  
Jihong Wang ◽  
Yan Jiang ◽  
Mingxin Geng

AbstractThe soil-borne disease caused by Fusarium graminearum seriously affects the corn quality. Straw can greatly improve soil quality, but the effect is limited by its nature and environmental factors. This study explored the impact of straw-JF-1(biocontrol bacteria) combination on soil environment and soil disease resistance. The results showed that the combined treatment increased the proportion of soil large and small macro-aggregates by 22.50 and 3.84%, with soil organic carbon (SOC) content by 16.18 and 16.95%, respectively. Compared to treatment with returning straw to the field alone, the straw-JF-1 combination increased the soil content of humic acid, fulvic acid, and humin by 14.06, 5.50, and 4.37%, respectively. Moreover, A metagenomics showed that returning straw to the field alone increased the abundance of disease-causing fungi (Fusarium and Plectosphaerella), however, the straw-JF-1 combination significantly suppressed this phenomenon as well as improved the abundance of probiotic microorganisms such as Sphingomonas, Mortierella, Bacillus, and Pseudomonas. Functional analysis indicated that the combination of straw and JF-1 improved some bacterial functions, including inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperones and function unknown, fungal functions associated with plant and animal pathogens were effectively inhibited. Pot experiments showed that the straw-JF-1 combination effectively inhibited the Fusarium graminearum induced damage to maize seedlings. Therefore, the combination of straw and JF-1 could be a practical method for soil management.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elizabeth O. Akinbiyi ◽  
Lara K. Abramowitz ◽  
Brianna L. Bauer ◽  
Maria S. K. Stoll ◽  
Charles L. Hoppel ◽  
...  

AbstractO-GlcNAcylation is a prevalent form of glycosylation that regulates proteins within the cytosol, nucleus, and mitochondria. The O-GlcNAc modification can affect protein cellular localization, function, and signaling interactions. The specific impact of O-GlcNAcylation on mitochondrial morphology and function has been elusive. In this manuscript, the role of O-GlcNAcylation on mitochondrial fission, oxidative phosphorylation (Oxphos), and the activity of electron transport chain (ETC) complexes were evaluated. In a cellular environment with hyper O-GlcNAcylation due to the deletion of O-GlcNAcase (OGA), mitochondria showed a dramatic reduction in size and a corresponding increase in number and total mitochondrial mass. Because of the increased mitochondrial content, OGA knockout cells exhibited comparable coupled mitochondrial Oxphos and ATP levels when compared to WT cells. However, we observed reduced protein levels for complex I and II when comparing normalized mitochondrial content and reduced linked activity for complexes I and III when examining individual ETC complex activities. In assessing mitochondrial fission, we observed increased amounts of O-GlcNAcylated dynamin-related protein 1 (Drp1) in cells genetically null for OGA and in glioblastoma cells. Individual regions of Drp1 were evaluated for O-GlcNAc modifications, and we found that this post-translational modification (PTM) was not limited to the previously characterized residues in the variable domain (VD). Additional modification sites are predicted in the GTPase domain, which may influence enzyme activity. Collectively, these results highlight the impact of O-GlcNAcylation on mitochondrial dynamics and ETC function and mimic the changes that may occur during glucose toxicity from hyperglycemia.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1231 ◽  
Author(s):  
Allison S. Bardagjy ◽  
Francene M. Steinberg

Cardiovascular disease is a leading cause of death around the world. Overall diet quality and dietary behaviors are core contributors to metabolic health. While therapeutic targets have traditionally focused on levels of lipoprotein cholesterol when evaluating cardiovascular risk, current perspectives on high-density lipoprotein (HDL) have shifted to evaluating the functionality of this lipoprotein particle. Effects of diet on cardiovascular health are mediated through multiple pathways, but the impact on HDL composition and function deserves greater attention. Potential areas of investigation involve changes in particle characteristics, distribution, microRNA cargo, and other functional changes such as improvements to cholesterol efflux capacity. Various dietary patterns like the Mediterranean diet and Dietary Approaches to Stop Hypertension (DASH) diet have beneficial effects on cardiovascular health and may prevent cardiovascular events. These healthful dietary patterns tend to be rich in plant-based foods, with cardiovascular benefits likely resulting from synergistic effects of the individual dietary components. The purpose of this review is to summarize current perspectives on selected functions of HDL particles and how various dietary patterns affect cardiovascular health biomarkers, with a focus on HDL functionality.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1752
Author(s):  
Tae Jin Cho ◽  
Sun Min Park ◽  
Hary Yu ◽  
Go Hun Seo ◽  
Hye Won Kim ◽  
...  

Although antibacterial spectrum of essential oils (EOs) has been analyzed along with consumers’ needs on natural biocides, singular treatments generally require high concentration of EOs and long-term exposures to eliminate target bacteria. To overcome these limitations, antibacterial complex has been developed and this review analyzed previous reports regarding the combined antibacterial effects of EOs. Since unexpectable combined effects (synergism or antagonism) can be derived from the treatment of antibacterial complex, synergistic and antagonistic combinations have been identified to improve the treatment efficiency and to avoid the overestimation of bactericidal efficacy, respectively. Although antibacterial mechanism of EOs is not yet clearly revealed, mode of action regarding synergistic effects especially for the elimination of pathogens by using low quantity of EOs with short-term exposure was reported. Whereas comprehensive analysis on previous literatures for EO-based disinfectant products implies that the composition of constituents in antibacterial complexes is variable and thus analyzing the impact of constituting substances (e.g., surfactant, emulsifier) on antibacterial effects is further needed. This review provides practical information regarding advances in the EO-based combined treatment technologies and highlights the importance of following researches on the interaction of constituents in antibacterial complex to clarify the mechanisms of antibacterial synergism and/or antagonism.


2016 ◽  
Vol 1 (13) ◽  
pp. 162-168
Author(s):  
Pippa Hales ◽  
Corinne Mossey-Gaston

Lung cancer is one of the most commonly diagnosed cancers across Northern America and Europe. Treatment options offered are dependent on the type of cancer, the location of the tumor, the staging, and the overall health of the person. When surgery for lung cancer is offered, difficulty swallowing is a potential complication that can have several influencing factors. Surgical interaction with the recurrent laryngeal nerve (RLN) can lead to unilateral vocal cord palsy, altering swallow function and safety. Understanding whether the RLN has been preserved, damaged, or sacrificed is integral to understanding the effect on the swallow and the subsequent treatment options available. There is also the risk of post-surgical reduction of physiological reserve, which can reduce the strength and function of the swallow in addition to any surgery specific complications. As lung cancer has a limited prognosis, the clinician must also factor in the palliative phase, as this can further increase the burden of an already compromised swallow. By understanding the surgery and the implications this may have for the swallow, there is the potential to reduce the impact of post-surgical complications and so improve quality of life (QOL) for people with lung cancer.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


1998 ◽  
Vol 21 (1) ◽  
pp. 1-28
Author(s):  
John A Atkinson ◽  
Camilla Dickson ◽  
Jane Downes ◽  
Paul Robins ◽  
David Sanderson

Summary Two small burnt mounds were excavated as part of the programme to mitigate the impact of motorway construction in the Crawford area. The excavations followed a research strategy designed to address questions of date and function. This paper surveys the various competing theories about burnt mounds and how the archaeological evidence was evaluated against those theories. Both sites produced radiocarbon dates from the Bronze Age and evidence to suggest that they were cooking places. In addition, a short account is presented of two further burnt mounds discovered during the construction of the motorway in Annandale.


2020 ◽  
Vol 56 (2) ◽  
pp. 119-122
Author(s):  
Doris Adams Hill ◽  
Theoni Mantzoros ◽  
Jonté C. Taylor

Special educators are often considered the experts in their school when it comes to developing functional behavior assessments (FBA) and behavior intervention plans (BIP), yet rarely are they trained much beyond basic antecedents, behaviors, and consequences (ABC). This column discusses concepts that will expand special education professionals’ knowledge to make better decisions regarding interventions for the students they serve. Specifically, the focus is on motivating operations (MO) and function-based interventions and the implications of these on behavior. Knowledge of the concept of MOs can enhance a teacher’s ability to provide evidence-based interventions and more fully developed behavioral interventions for students in their purview.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 82
Author(s):  
Amandeep Kaur ◽  
Louise Ferguson ◽  
Niels Maness ◽  
Becky Carroll ◽  
William Reid ◽  
...  

Pecan is native to the United States. The US is the world’s largest pecan producer with an average yearly production of 250 to 300 million pounds; 80 percent of the world’s supply. Georgia, New Mexico, Texas, Arizona, Oklahoma, California, Louisiana, and Florida are the major US pecan producing states. Pecan trees frequently suffer from spring freeze at bud break and bloom as the buds are quite sensitive to freeze damage. This leads to poor flower and nut production. This review focuses on the impact of spring freeze during bud differentiation and flower development. Spring freeze kills the primary terminal buds, the pecan tree has a second chance for growth and flowering through secondary buds. Unfortunately, secondary buds have less bloom potential than primary buds and nut yield is reduced. Spring freeze damage depends on severity of the freeze, bud growth stage, cultivar type and tree age, tree height and tree vigor. This review discusses the impact of temperature on structure and function of male and female reproductive organs. It also summarizes carbohydrate relations as another factor that may play an important role in spring growth and transition of primary and secondary buds to flowers.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


Sign in / Sign up

Export Citation Format

Share Document