Experimental Results of Amplitude Modulation Reflectometry on High Density Tokamak Plasmas

Author(s):  
M. Zerbini ◽  
P. Buratti ◽  
P. Amadeo
1997 ◽  
Vol 68 (1) ◽  
pp. 428-430 ◽  
Author(s):  
M. Zerbini ◽  
P. Amadeo ◽  
P. Buratti

Author(s):  
Yalcin Yuksel ◽  
Marcel van Gent ◽  
Esin Cevik ◽  
H. Alper Kaya ◽  
Irem Gumuscu ◽  
...  

The stability number for rubble mound breakwaters is a function of several parameters and depends on unit shape, placing method, slope angle, relative density, etc. In this study two different densities for cubes in breakwater armour layers were tested to determine the influence of the density on the stability. The experimental results show that the stability of high density blocks were found to be more stable and the damage initiation for high density blocks started at higher stability numbers compared to normal density cubes.


2014 ◽  
Vol 979 ◽  
pp. 58-61
Author(s):  
Piya Kovintavewat

High-density bit-patterned media recording (BPMR) can be obtained by reducing the spacing between data bitislands in both the along-and across-track directions, thus leading to severe intersymbol interference (ISI) and intertrack interference (ITI) because of small bit and track pitches, respectively. Here, we propose to use the graph-based detector, instead of the trellis-based detector, in iterative decoding to combat the ISI and the ITI for a multi-head multi-track BPMR system. Specifically, the readback signal is sent to the graph-based detector before iteratively exchanging the soft information with a decoder. Experimental results indicate that at low to moderate complexity, the proposed scheme outperforms the existing schemes, especially at high recording density.


Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotorstator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the non-rotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gages, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disc. Its predictions are in good agreement with experimental results.


2005 ◽  
Vol 475-479 ◽  
pp. 2635-2638
Author(s):  
Jin Liang Huang ◽  
Qiang Li ◽  
Ping Liu ◽  
Qi Ming Dong

Milisecond high density electrical pulse was used to age one of the typical IC lead frame materials Cu-2.5Fe-0.03P-0.1Zn copper alloy. The effects of electrical pulse aging on the microstructures, electrical conductivity and microhardness of this alloy were systematically investigated. The experimental results shown that the alloy phase precipitated in Cu-2.5Fe-0.03P-0.1Zn copper alloy during electrical pulse aging could be controlled to the order of nano-size and the ideal match of electrical conductivity and microhardness could be achieved in the condition of optimized parameters of electrical pulse. The electrical conductivity of the alloy was kept at above 60%IACS while the microhardness reached to HV115. A preliminary theoretical analysis was made to explain the unique action of electrical pulse.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotor-stator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the nonrotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gauges, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disk. Its predictions are in good agreement with experimental results.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450030
Author(s):  
YINGTAO LI ◽  
XINYU JIANG ◽  
CHUNLAN TAO

A bipolar RRAM device based on Ni / HfO 2/n+- Si structure with self-rectifying characteristics is demonstrated for high density cross-bar memory application. Experimental results indicate that Ni conductive filament generated at LRS plays an important role in resistive switching, resulting in the formation of a Schottky junction at the Ni -CF/n+- Si interface which determines the self-rectifying behavior at LRS. These results are very important from the point of view of understanding the self-rectifying switching mechanism and improving the resistive switching characteristics of self-rectifying RRAM devices.


Author(s):  
Yohei Magara ◽  
Mitsuhiro Narita ◽  
Kazuyuki Yamaguchi ◽  
Naohiko Takahashi ◽  
Tetsuya Kuwano

Characteristics of natural frequencies of an impeller and an equivalent disc were investigated in high-density gas to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications. The equivalent disc had outer and inner diameters equal to those of the impeller. We expected that natural frequencies would decrease with increasing the gas density because of the added-mass effect. However, we found experimentally that some natural frequencies of the impeller and the disc in high-density gas decreased but others increased. Moreover, we observed, under high-density condition, some resonance frequencies that we did not observe under low-density condition. These experimental results cannot be explained by only the added-mass effect. For simplicity, we focused on the disc to understand the mechanism of the behavior of natural frequencies. We developed a theoretical analysis of fluid-structure interaction considering not only the mass but also stiffness of gas. The analysis gave a qualitative explanation of the experimental results. In addition, we carried out a fluid-structure interaction analysis using the finite element method. The behavior of natural frequencies of the disc in high-density gas was predicted with errors less than 6%.


2022 ◽  
Vol 12 (2) ◽  
pp. 884
Author(s):  
Xinlei Qian ◽  
Xiaochao Wang ◽  
Xinghua Lu ◽  
Tianyu Zhang ◽  
Wei Fan

The group velocity dispersion (GVD) occurring in the front end of high-power lasers is one of the primary factors leading to the conversion of frequency modulation (FM) to amplitude modulation (AM). In this paper, we propose a modified, active, closed-loop feedback compensation device for GVD-induced FM–AM conversion, using a two-dimensional, electric, adjustable mirror mount and parallel grating pair to improve the long-term stability, efficiency of adjustment, and accuracy of compensation. Experimental results of a 12 h FM–AM depth test revealed that the depth varied between 2.28% and 5.22%. Moreover, we formulated a mathematical relationship between the dispersion parameters and temperature in optical fibers to analyze the intrinsic effect of temperature on FM–AM. The related simulation and experimental results consistently validated the quantitative relationship between the temperature and FM–AM depth.


Sign in / Sign up

Export Citation Format

Share Document