Small Area X-Ray Diffraction Techniques; Applications of the Micro-Diffractometer to Phase Identification and Strain Determination

1984 ◽  
pp. 229-238 ◽  
Author(s):  
C. C. Goldsmith ◽  
G. A. Walker
1983 ◽  
Vol 27 ◽  
pp. 229-238
Author(s):  
C.C. Goldsmith ◽  
G.A. Walker

AbstractThe trend towards smaller devices and packages in the semiconductor industry makes it increasingly important and increasingly difficult to obtain useful X-ray diffraction information from the small areas employed. This study covers applications of a Rigaku micro-diffractometer to measure strain and obtain phase information from areas less than 100μm in diameter. Examples of residual stress mappings between electrical vias only 100μm apart and phase determination on a single electrical via 120μm diameter will be shown.


1988 ◽  
pp. 77-85 ◽  
Author(s):  
Thomas L. Nunes ◽  
Charles C. Goldsmith

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


2012 ◽  
Vol 20 (2) ◽  
pp. 7-7
Author(s):  
Charles Lyman

This year marks the 100th anniversary of the discovery of X-ray diffraction and the 85th anniversary of electron diffraction (see Microscopy Pioneers). For most of the time since their introduction, microscopists have known these two techniques as the primary phase identification methods used in conjunction with various microscopies. However, these two diffraction methods also have played enormous roles in understanding the structure of matter, as well as the nature of both X rays and electrons.


1984 ◽  
pp. 21-26 ◽  
Author(s):  
Raymond P. Goehner ◽  
Mary F. Garbauskas

2019 ◽  
Vol 5 (4) ◽  
pp. 61 ◽  
Author(s):  
Raja ◽  
Esquenazi ◽  
Jones ◽  
Li ◽  
Brinson ◽  
...  

In this work, as-received HiPCO single walled carbon nanotubes (SWCNTs) are incorporated in a controllable manner at various concentrations into Cu-SWCNT composites via electroless plating, by varying the related reaction times, with polyethylene glycol (PEG) used as a dispersing agent. The resultant samples were analyzed using scanning electron microscopy (SEM) for morphology assessment, energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) for elemental analysis, X-ray diffraction (XRD) for the assessment of crystal phase identification, and Raman spectroscopy for the confirmation of the presence of the incorporated SWCNTs. The Cu-SWCNT composites were found to contain carbon, catalytic iron (associated with the raw, as-received SWCNTs), oxygen, and copper; the latter was found to be inversely proportional to carbon and iron contents. The oxygen (associated with both the SWCNT defect sites and oxidized copper surfaces) remained more or less constant regardless of the proportion of SWCNTs in the composites. The Raman IG:ID ratio remains within the experimental error constant, indicating that the electroless deposition does not have a deleterious effect on the SWCNTs. At short deposition times, SEM revealed a relatively dense structure comprising a distinctive fibrous morphology, suggestive of an underlying SWCNT substrate coated with copper; however, with increasing deposition, a more porous morphology is observed. The size of the granular particles increases up until 10 min of reaction, after which time it remains unchanged.


2007 ◽  
Vol 43 (1) ◽  
pp. 21-28 ◽  
Author(s):  
C. Tang ◽  
Y. Du ◽  
H. Xu ◽  
S. Hao ◽  
L. Zhang

To ascertain whether the liquid miscibility gap exists in the Ce-Mn system, 3 key alloys are prepared by arc melting the pure elements, annealed at specified temperature for 20 minutes, quenched in ice water and then subjected to X-ray diffraction (XRD) analysis for phase identification and to scanning electron microscopy (SEM) with energy dispersive X-ray analysis for microstructure observation and composition analysis. The XRD examination indicated that terminal solutions based on Ce and Mn exist in the water-quenched alloys. No compound was detected. Microstructure observation and composition analysis indicate the nonexistence of the liquid miscibility gap. The newly assessed Ce-Mn phase diagram was presented. .


2014 ◽  
Vol 08 (02) ◽  
pp. 211-215 ◽  
Author(s):  
Yeliz Guven ◽  
Elif Bahar Tuna ◽  
Muzaffer Emin Dincol ◽  
Oya Aktoren

ABSTRACT Objective: The purpose of this study was to investigate and compare the crystalline structures of recently released MTA Plus (MTA-P), MTA Angelus (MTA-A), DiaRoot BioAggregate (BA) by X-ray diffraction (XRD) analysis. Materials and Methods: Phase analysis was carried out on powder and set forms of tested materials. The powder specimens placed into sample holders that were packed with a glass slide and the set samples prepared according to the manufacturer's instructions were placed into molds. The samples after being set for three days at 37°C and 100% humidity in an incubator were mounted onto the XRD machine and phase identification was accomplished using a search-match software program. Results: XRD findings indicated that major constituents of MTA-P were bismuth oxide, portlandite, dicalcium silicate and tricalcium silicate. The crystal structure of MTA-A were similar to those of MTA-P except for the absence of portlandite. Additionally, MTA-A had tricalcium aluminate differing from MTA-P. BA mainly differed from MTA-P and MTA-A by the radiopacifier (tantalum oxide-TO) in its composition. Conclusions: The majority of constituents of the tested materials have shown similarity except for the presence of tricalcium aluminate in MTA-A and the inclusion of TO in BA. In addition, set MTA-P showed a strong peak of portlandite.


Sign in / Sign up

Export Citation Format

Share Document