Similarities and Dissimilarities between Outer Mitochondrial Membrane and Endoplasmic Reticulum

Author(s):  
Gian Luigi Sottocasa
Glycobiology ◽  
2009 ◽  
Vol 20 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Alessandra Bigi ◽  
Lavinia Morosi ◽  
Chiara Pozzi ◽  
Matilde Forcella ◽  
Guido Tettamanti ◽  
...  

2018 ◽  
Author(s):  
Alexandre Légiot ◽  
Claire Céré ◽  
Thibaud Dupoiron ◽  
Mohamed Kaabouni ◽  
Stéphen Manon

AbstractThe distribution of the pro-apoptotic protein Bax in the outer mitochondrial membrane (OMM) is a central point of regulation of apoptosis. It is now widely recognized that parts of the endoplasmic reticulum (ER) are closely associated to the OMM, and are actively involved in different signalling processes. We adressed a possible role of these domains, called Mitochondria-Associated Membranes (MAMs) in Bax localization and fonction, by expressing the human protein in a yeast mutant deleted of MDM34, a ERMES component (ER-Mitochondria Encounter Structure). By affecting MAMs stability, the deletion of MDM34 altered Bax mitochondrial localization, and decreased its capacity to release cytochrome c. Furthermore, the deletion of MDM34 decreased the size of an uncompletely released, MAMs-associated pool of cytochrome c.


2016 ◽  
Vol 36 (24) ◽  
pp. 3058-3074 ◽  
Author(s):  
Manoj Prasad ◽  
Anna N. Walker ◽  
Jasmeet Kaur ◽  
James L. Thomas ◽  
Shirley A. Powell ◽  
...  

The acute response to stress consists of a series of physiological programs to promote survival by generating glucocorticoids and activating stress response genes that increase the synthesis of many chaperone proteins specific to individual organelles. In the endoplasmic reticulum (ER), short-term stress triggers activation of the unfolded protein response (UPR) module that either leads to neutralization of the initial stress or adaptation to it; chronic stress favors cell death. UPR induces expression of the transcription factor, C/EBP homology protein (CHOP), and its deletion protects against the lethal consequences of prolonged UPR. Here, we show that stress-induced CHOP expression coincides with increased metabolic activity. During stress, the ER and mitochondria come close to each other, resulting in the formation of a complex consisting of the mitochondrial translocase, translocase of outer mitochondrial membrane 22 (Tom22), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) via its intermembrane space (IMS)-exposed charged unstructured loop region. Stress increased the circulation of phosphates, which elevated pregnenolone synthesis by 2-fold by increasing the stability of 3βHSD2 and its association with the mitochondrion-associated ER membrane (MAM) and mitochondrial proteins. In summary, cytoplasmic CHOP plays a central role in coordinating the interaction of MAM proteins with the outer mitochondrial membrane translocase, Tom22, to activate metabolic activity in the IMS by enhanced phosphate circulation.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Ákos Farkas ◽  
Katherine E. Bohnsack

Tail-anchored (TA) proteins fulfill diverse cellular functions within different organellar membranes. Their characteristic C-terminal transmembrane segment renders TA proteins inherently prone to aggregation and necessitates their posttranslational targeting. The guided entry of TA proteins (GET in yeast)/transmembrane recognition complex (TRC in humans) pathway represents a major route for TA proteins to the endoplasmic reticulum (ER). Here, we review important new insights into the capture of nascent TA proteins at the ribosome by the GET pathway pretargeting complex and the mechanism of their delivery into the ER membrane by the GET receptor insertase. Interestingly, several alternative routes by which TA proteins can be targeted to the ER have emerged, raising intriguing questions about how selectivity is achieved during TA protein capture. Furthermore, mistargeting of TA proteins is a fundamental cellular problem, and we discuss the recently discovered quality control machineries in the ER and outer mitochondrial membrane for displacing mislocalized TA proteins.


1988 ◽  
Vol 66 (3) ◽  
pp. 583-587 ◽  
Author(s):  
Donald G. Ruch ◽  
Mary C. North

The basidiospore wall of Agaricus campestris Fr. consists of three distinct layers. The outer two layers are continuous around the spore, while the third layer originates only a short distance from the hilar appendage and quickly thickens to form the bulk of the wall material of the hilar appendage. The protoplast is surrounded by a typical plasma membrane which lacks distinct invaginations. Centrally located nonmembrane-bound lipid droplets comprise the bulk of the protoplasm. Spores are binucleate, but the two nuclei do not exhibit any distinct relationship to each other. Sausage-shaped mitochondria with only a few but well-delineated plate-like cristae are present. Scant endoplasmic reticulum occurs just beneath the plasma membrane. Ribosomes occur regularly attached to the endoplasmic reticulum and outer mitochondrial membrane, as well as being densely packed throughout the cytoplasm. The structure and possible functions of single membrane bound vacuoles and microbody-like organelles are discussed in relation to other basidiospores.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Verena Dederer ◽  
Anton Khmelinskii ◽  
Anna Gesine Huhn ◽  
Voytek Okreglak ◽  
Michael Knop ◽  
...  

Tail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation. Here we screened for factors involved in degradation of TA proteins mislocalized to mitochondria. We show that the ER-associated degradation (ERAD) E3 ubiquitin ligase Doa10 controls cytoplasmic level of Msp1 clients. Furthermore, we identified the uncharacterized OMM protein Fmp32 and the ectopically expressed subunit of the ER-mitochondria encounter structure (ERMES) complex Gem1 as native clients for Msp1 and Doa10. We propose that productive localization of TA proteins to the OMM is ensured by complex assembly, while orphan subunits are extracted by Msp1 and eventually degraded by Doa10.


Author(s):  
Krishan K. Arora ◽  
Glenn L. Decker ◽  
Peter L. Pedersen

Hexokinase (ATP: D-hexose 6-phophotransferase EC 2.7.1.1) is the first enzyme of the glycolytic pathway which commits glucose to catabolism by catalyzing the phosphorylation of glucose with ATP. Previous studies have shown diat hexokinase activity is markedly elevated in rapidly growing tumor cells exhibiting high glucose catabolic rates. A large fraction (50-80%) of this enzyme activity is bound to the mitochondrial fraction (1,2) where it has preferred access to ATP (3). In contrast,the hexokinase activity of normal tissues is quite low, with one exception being brain which is a glucose-utilizing tissue (4). Biochemical evidence involving rigorous subfractionation studies have revealed striking differences between the subcellular distribution of hexokinase in normal and tumor cells [See review by Arora et al (4)].In the present report, we have utilized immunogold labeling techniques to evaluate die subcellular localization of hexokinase in highly glycolytic AS-30D hepatoma cells and in the tissue of its origin, i.e., rat liver.


Sign in / Sign up

Export Citation Format

Share Document