scholarly journals Capture and delivery of tail-anchored proteins to the endoplasmic reticulum

2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Ákos Farkas ◽  
Katherine E. Bohnsack

Tail-anchored (TA) proteins fulfill diverse cellular functions within different organellar membranes. Their characteristic C-terminal transmembrane segment renders TA proteins inherently prone to aggregation and necessitates their posttranslational targeting. The guided entry of TA proteins (GET in yeast)/transmembrane recognition complex (TRC in humans) pathway represents a major route for TA proteins to the endoplasmic reticulum (ER). Here, we review important new insights into the capture of nascent TA proteins at the ribosome by the GET pathway pretargeting complex and the mechanism of their delivery into the ER membrane by the GET receptor insertase. Interestingly, several alternative routes by which TA proteins can be targeted to the ER have emerged, raising intriguing questions about how selectivity is achieved during TA protein capture. Furthermore, mistargeting of TA proteins is a fundamental cellular problem, and we discuss the recently discovered quality control machineries in the ER and outer mitochondrial membrane for displacing mislocalized TA proteins.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Verena Dederer ◽  
Anton Khmelinskii ◽  
Anna Gesine Huhn ◽  
Voytek Okreglak ◽  
Michael Knop ◽  
...  

Tail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation. Here we screened for factors involved in degradation of TA proteins mislocalized to mitochondria. We show that the ER-associated degradation (ERAD) E3 ubiquitin ligase Doa10 controls cytoplasmic level of Msp1 clients. Furthermore, we identified the uncharacterized OMM protein Fmp32 and the ectopically expressed subunit of the ER-mitochondria encounter structure (ERMES) complex Gem1 as native clients for Msp1 and Doa10. We propose that productive localization of TA proteins to the OMM is ensured by complex assembly, while orphan subunits are extracted by Msp1 and eventually degraded by Doa10.


2020 ◽  
Vol 36 (1) ◽  
pp. 141-164
Author(s):  
Lan Wang ◽  
Peter Walter

Mitochondrial function depends on the efficient import of proteins synthesized in the cytosol. When cells experience stress, the efficiency and faithfulness of the mitochondrial protein import machinery are compromised, leading to homeostatic imbalances and damage to the organelle. Yeast Msp1 (mitochondrial sorting of proteins 1) and mammalian ATAD1 (ATPase family AAA domain–containing 1) are orthologous AAA proteins that, fueled by ATP hydrolysis, recognize and extract mislocalized membrane proteins from the outer mitochondrial membrane. Msp1 also extracts proteins that have become stuck in the import channel. The extracted proteins are targeted for proteasome-dependent degradation or, in the case of mistargeted tail-anchored proteins, are given another chance to be routed correctly. In addition, ATAD1 is implicated in the regulation of synaptic plasticity, mediating the release of neurotransmitter receptors from postsynaptic scaffolds to allow their trafficking. Here we discuss how structural and functional specialization imparts the unique properties that allow Msp1/ATAD1 ATPases to fulfill these diverse functions and also highlight outstanding questions in the field.


Glycobiology ◽  
2009 ◽  
Vol 20 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Alessandra Bigi ◽  
Lavinia Morosi ◽  
Chiara Pozzi ◽  
Matilde Forcella ◽  
Guido Tettamanti ◽  
...  

2019 ◽  
Author(s):  
Pierre Vigié ◽  
Cécile Gonzalez ◽  
Stephen Manon ◽  
Ingrid Bhatia-Kissova ◽  
Nadine Camougrand

AbstractMitophagy, the process that degrades mitochondria selectively through autophagy, is involved in the quality control of these organelles. In yeast, the presence of the Atg32 protein on the outer mitochondrial membrane allows for the recognition and targeting of superfluous or damaged mitochondria for degradation. Some posttranslational modifications, such as phosphorylation, are crucial for the execution of the mitophagy process. In our study, we showed that in the stationary phase of growth, and to a lesser extent during starvation, the Atg32 protein level decreases. The fact that a decline in Atg32 level can be prevented by inhibition of the proteolytic activity of proteasome may indicate that Atg32 is also ubiquitylated. In fact, mass spectrometry analysis of purified Atg32 protein showed ubiquitination of lysine residue in position 282. These different patterns of posttranslational modifications of Atg32 could allow cells to control the mitophagy process carefully.


2004 ◽  
Vol 15 (2) ◽  
pp. 908-921 ◽  
Author(s):  
Gregory Huyer ◽  
Gaby L. Longsworth ◽  
Deborah L. Mason ◽  
Monica P. Mallampalli ◽  
J. Michael McCaffery ◽  
...  

The folding of nascent secretory and membrane proteins is monitored by the endoplasmic reticulum (ER) quality control system. Misfolded proteins are retained in the ER and can be removed by ER-associated degradation. As a model for the ER quality control of multispanning membrane proteins in yeast, we have been studying mutant forms of Ste6p. Here, we identify mislocalized mutant forms of Ste6p that induce the formation of, and localize to, prominent structures that are absent in normal cells. We have named these structures ER-associated compartments (ERACs), based on their juxtaposition to and connection with the ER, as observed by fluorescence and electron microscopy. ERACs comprise a network of tubulo-vesicular structures that seem to represent proliferated ER membranes. Resident ER lumenal and membrane proteins are present in ERACs in addition to their normal ER localization, suggesting there is no barrier for their entry into ERACs. However, the forms of Ste6p in ERACs are excluded from the ER and do not enter the secretory pathway; instead, they are ultimately targeted for ER-associated degradation. The presence of ERACs does not adversely affect secretory protein traffic through the ER and does not lead to induction of the unfolded protein response. We propose that ERACs may be holding sites to which misfolded membrane proteins are specifically diverted so as not to interfere with normal cellular functions. We discuss the likelihood that related ER membrane proliferations that form in response to certain other mutant or unassembled membrane proteins may be substantially similar to ERACs.


2018 ◽  
Author(s):  
Alexandre Légiot ◽  
Claire Céré ◽  
Thibaud Dupoiron ◽  
Mohamed Kaabouni ◽  
Stéphen Manon

AbstractThe distribution of the pro-apoptotic protein Bax in the outer mitochondrial membrane (OMM) is a central point of regulation of apoptosis. It is now widely recognized that parts of the endoplasmic reticulum (ER) are closely associated to the OMM, and are actively involved in different signalling processes. We adressed a possible role of these domains, called Mitochondria-Associated Membranes (MAMs) in Bax localization and fonction, by expressing the human protein in a yeast mutant deleted of MDM34, a ERMES component (ER-Mitochondria Encounter Structure). By affecting MAMs stability, the deletion of MDM34 altered Bax mitochondrial localization, and decreased its capacity to release cytochrome c. Furthermore, the deletion of MDM34 decreased the size of an uncompletely released, MAMs-associated pool of cytochrome c.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gian-Luca McLelland ◽  
Thomas Goiran ◽  
Wei Yi ◽  
Geneviève Dorval ◽  
Carol X Chen ◽  
...  

Despite their importance as signaling hubs, the function of mitochondria-ER contact sites in mitochondrial quality control pathways remains unexplored. Here we describe a mechanism by which Mfn2, a mitochondria-ER tether, gates the autophagic turnover of mitochondria by PINK1 and parkin. Mitochondria-ER appositions are destroyed during mitophagy, and reducing mitochondria-ER contacts increases the rate of mitochondrial degradation. Mechanistically, parkin/PINK1 catalyze a rapid burst of Mfn2 phosphoubiquitination to trigger p97-dependent disassembly of Mfn2 complexes from the outer mitochondrial membrane, dissociating mitochondria from the ER. We additionally demonstrate that a major portion of the facilitatory effect of p97 on mitophagy is epistatic to Mfn2 and promotes the availability of other parkin substrates such as VDAC1. Finally, we reconstitute the action of these factors on Mfn2 and VDAC1 ubiquitination in a cell-free assay. We show that mitochondria-ER tethering suppresses mitophagy and describe a parkin-/PINK1-dependent mechanism that regulates the destruction of mitochondria-ER contact sites.


2016 ◽  
Vol 36 (24) ◽  
pp. 3058-3074 ◽  
Author(s):  
Manoj Prasad ◽  
Anna N. Walker ◽  
Jasmeet Kaur ◽  
James L. Thomas ◽  
Shirley A. Powell ◽  
...  

The acute response to stress consists of a series of physiological programs to promote survival by generating glucocorticoids and activating stress response genes that increase the synthesis of many chaperone proteins specific to individual organelles. In the endoplasmic reticulum (ER), short-term stress triggers activation of the unfolded protein response (UPR) module that either leads to neutralization of the initial stress or adaptation to it; chronic stress favors cell death. UPR induces expression of the transcription factor, C/EBP homology protein (CHOP), and its deletion protects against the lethal consequences of prolonged UPR. Here, we show that stress-induced CHOP expression coincides with increased metabolic activity. During stress, the ER and mitochondria come close to each other, resulting in the formation of a complex consisting of the mitochondrial translocase, translocase of outer mitochondrial membrane 22 (Tom22), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) via its intermembrane space (IMS)-exposed charged unstructured loop region. Stress increased the circulation of phosphates, which elevated pregnenolone synthesis by 2-fold by increasing the stability of 3βHSD2 and its association with the mitochondrion-associated ER membrane (MAM) and mitochondrial proteins. In summary, cytoplasmic CHOP plays a central role in coordinating the interaction of MAM proteins with the outer mitochondrial membrane translocase, Tom22, to activate metabolic activity in the IMS by enhanced phosphate circulation.


Sign in / Sign up

Export Citation Format

Share Document