Intrinsic Brain Activity and Resting State Networks

Author(s):  
Abraham Z. Snyder
2015 ◽  
Vol 112 (17) ◽  
pp. E2235-E2244 ◽  
Author(s):  
Anish Mitra ◽  
Abraham Z. Snyder ◽  
Tyler Blazey ◽  
Marcus E. Raichle

It has been widely reported that intrinsic brain activity, in a variety of animals including humans, is spatiotemporally structured. Specifically, propagated slow activity has been repeatedly demonstrated in animals. In human resting-state fMRI, spontaneous activity has been understood predominantly in terms of zero-lag temporal synchrony within widely distributed functional systems (resting-state networks). Here, we use resting-state fMRI from 1,376 normal, young adults to demonstrate that multiple, highly reproducible, temporal sequences of propagated activity, which we term “lag threads,” are present in the brain. Moreover, this propagated activity is largely unidirectional within conventionally understood resting-state networks. Modeling experiments show that resting-state networks naturally emerge as a consequence of shared patterns of propagation. An implication of these results is that common physiologic mechanisms may underlie spontaneous activity as imaged with fMRI in humans and slowly propagated activity as studied in animals.


2020 ◽  
Author(s):  
Kazumi Sugimura ◽  
Yasuhiro Iwasa ◽  
Ryota Kobayashi ◽  
Tatsuru Honda ◽  
Junya Hashimoto ◽  
...  

The long-range temporal correlation (LRTC) in resting-state intrinsic brain activity is known to be associated with temporal behavioral patterns, including decision making based on internal criteria such as self-knowledge. However, the association between the neuronal LRTC and the subjective sense of identity remains to be explored; in other words, whether our subjective sense of consistent self across time relates to the temporal consistency of neural activity. The present study examined the relationship between the LRTC of resting-state scalp electroencephalography (EEG) and a subjective sense of identity measured by the Erikson Psychosocial Stage Inventory (EPSI). Consistent with our prediction based on previous studies of neuronal-behavioral relationships, the frontocentral alpha LRTC correlated negatively with identity confusion. Moreover, from the descriptive analyses, centroparietal beta LRTC showed negative correlations with identity confusion, and frontal theta LRTC showed positive relationships with identity synthesis. These results suggest that more temporal consistency (reversely, less random noise) in intrinsic brain activity is associated with less confused and better-synthesized identity. Our data provide further evidence that the LRTC of intrinsic brain activity might serve as a noise suppression mechanism at the psychological level.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiwen Yang ◽  
Xinyi Zha ◽  
Xiaodong Zhang ◽  
Jun Ke ◽  
Su Hu ◽  
...  

Individuals with subjective cognitive decline (SCD) are more likely to develop into Alzheimer disease (AD) in the future. Resting-state functional magnetic resonance imaging (rs-fMRI) studies have shown alterations of intrinsic brain activity (IBA) in SCD individuals. However, rs-fMRI studies to date have mainly focused on static characteristics of IBA, with few studies reporting dynamics- and concordance-related changes in IBA indices in SCD individuals. To investigate these aberrant changes, a temporal dynamic analysis of rs-fMRI data was conducted on 94 SCD individuals (71.07 ± 6.18 years, 60 female), 75 (74.36 ± 8.42 years, 35 female) mild cognitive impairment (MCI) patients, and 82 age-, gender-, and education-matched controls (NCs; 73.88 ± 7.40 years, 49 female) from the Alzheimer's Disease Neuroimaging Initiative database. The dynamics and concordance of the rs-fMRI indices were calculated. The results showed that SCD individuals had a lower amplitude of low-frequency fluctuations dynamics in bilateral hippocampus (HP)/parahippocampal gyrus (PHG)/fusiform gyrus (FG) and bilateral cerebellum, a lower fractional amplitude of low-frequency fluctuation dynamics in bilateral precuneus (PreCu) and paracentral lobule, and a lower regional homogeneity dynamics in bilateral cerebellum, vermis, and left FG compared with the other two groups, whereas those in MCI patients were higher (Gaussian random field–corrected, voxel-level P < 0.001, cluster-level P < 0.05). Furthermore, SCD individuals had higher concordance in bilateral HP/PHG/FG, temporal lobe, and left midcingulate cortex than NCs, but those in MCI were lower than those in NCs. No correlation between concordance values and neuropsychological scale scores was found. SCD individuals showed both dynamics and concordance-related alterations in IBA, which indicates a compensatory mechanism in SCD individuals. Temporal dynamics analysis offers a novel approach to capturing brain alterations in individuals with SCD.


2021 ◽  
Author(s):  
Hasan Sbaihat ◽  
Ravichandran Rajkumar ◽  
Shukti Ramkiran ◽  
Abed Al-Nasser Assi ◽  
N. Jon Shah ◽  
...  

AbstractThe default mode network (DMN), the salience network (SN), and the central executive network (CEN) could be considered as the core resting-state brain networks (RSN) due to their involvement in a wide range of cognitive tasks. Despite the large body of knowledge relating to their regional spontaneous activity (RSA) and functional connectivity (FC) of these networks, less is known about the influence of task-associated activity on these parameters and on the interaction between these three networks. We have investigated the effects of the visual-oddball paradigm on three fMRI measures (amplitude of low-frequency fluctuations for RSA, regional homogeneity for local FC, and degree centrality for global FC) in these three core RSN networks. A rest-task-rest paradigm was used and the RSNs were identified using independent component analysis (ICA) on the resting-state data. We found that the task-related brain activity induced different patterns of significant changes within the three RS networks. Most changes were strongly associated with the task performance. Furthermore, the task-activity significantly increased the inter-network correlations between the SN and CEN as well as between the DMN and CEN, but not between the DMN and SN. A significant dynamical change in RSA, alongside local and global FC within the three core resting-state networks following a simple cognitive activity may be an expression of the distinct involvement of these networks in the performance of the task and their various outcomes.


2020 ◽  
Vol 46 (4) ◽  
pp. 971-980
Author(s):  
Daniel Russo ◽  
Matteo Martino ◽  
Paola Magioncalda ◽  
Matilde Inglese ◽  
Mario Amore ◽  
...  

Abstract Objective Manic and depressive phases of bipolar disorder (BD) show opposite symptoms in psychomotor, thought, and affective dimensions. Neuronally, these may depend on distinct patterns of alterations in the functional architecture of brain intrinsic activity. Therefore, the study aimed to characterize the spatial and temporal changes of resting-state activity in mania and depression, by investigating the regional homogeneity (ReHo) and degree of centrality (DC), in different frequency bands. Methods Using resting-state functional magnetic resonance imaging (fMRI), voxel-wise ReHo and DC were calculated—in the standard frequency band (SFB: 0.01–0.10 Hz), as well as in Slow5 (0.01–0.027 Hz) and Slow4 (0.027–0.073 Hz)—and compared between manic (n = 36), depressed (n = 43), euthymic (n = 29) patients, and healthy controls (n = 112). Finally, clinical correlations were investigated. Results Mania was mainly characterized by decreased ReHo and DC in Slow4 in the medial prefrontal cortex (as part of the default-mode network [DMN]), which in turn correlated with manic symptomatology. Conversely, depression was mainly characterized by decreased ReHo in SFB in the primary sensory-motor cortex (as part of the sensorimotor network [SMN]), which in turn correlated with depressive symptomatology. Conclusions Our data show a functional reconfiguration of the spatiotemporal structure of intrinsic brain activity to occur in BD. Mania might be characterized by a predominance of sensorimotor over associative networks, possibly driven by a deficit of the DMN (reflecting in internal thought deficit). Conversely, depression might be characterized by a predominance of associative over sensorimotor networks, possibly driven by a deficit of the SMN (reflecting in psychomotor inhibition).


2020 ◽  
Vol 12 ◽  
Author(s):  
Tianyi Zhang ◽  
Xiao Luo ◽  
Qingze Zeng ◽  
Yanv Fu ◽  
Zheyu Li ◽  
...  

BackgroundSmoking is a modifiable risk factor for Alzheimer’s disease (AD). However, smoking-related effects on intrinsic brain activity in high-risk AD population are still unclear.ObjectiveWe aimed to explore differences in smoking effects on brain function between healthy elderly and amnestic mild cognitive impairment (aMCI) patients using ReHo mapping.MethodsWe identified 64 healthy elderly controls and 116 aMCI patients, including 98 non-smoking and 18 smoking aMCI. Each subject underwent structural and resting-state functional MRI scanning and neuropsychological evaluations. Regional homogeneity (ReHo) mapping was used to assess regional brain synchronization. After correction for age, gender, education, and gray matter volume, we explored the difference of ReHo among groups in a voxel-wise way based on analysis of covariance (ANCOVA), followed by post hoc two-sample analyses (p < 0.05, corrected). Further, we correlated the mean ReHo with neuropsychological scales.ResultsThree groups were well-matched in age, gender, and education. Significant ReHo differences were found among three groups, located in the left supramarginal gyrus (SMG) and left angular gyrus (AG). Specifically, non-smoking aMCI had lower ReHo in SMG and AG than smoking aMCI and controls. By contrast, smoking aMCI had greater AG ReHo than healthy controls (p < 0.05). Across groups, correlation analyses showed that left AG ReHo correlated with MMSE (r = 0.18, p = 0.015), clock drawing test (r = 0.20, p = 0.007), immediate recall (r = 0.36, p < 0.001), delayed recall (r = 0.34, p < 0.001), and auditory verbal learning test (r = 0.20, p = 0.007).ConclusionSmoking might pose compensatory or protective effects on intrinsic brain activity in aMCI patients.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Filippo Cieri ◽  
Roberto Esposito

Resting state functional magnetic resonance imaging (rs-fMRI) allows studying spontaneous brain activity in absence of task, recording changes of Blood Oxygenation Level Dependent (BOLD) signal. rs-fMRI enables identification of brain networks also called Resting State Networks (RSNs) including the most studied Default Mode Network (DMN). The simplicity and speed of execution make rs-fMRI applicable in a variety of normal and pathological conditions. Since it does not require any task, rs-fMRI is particularly useful for protocols on patients, children, and elders, increasing participant’s compliance and reducing intersubjective variability due to the task performance. rs-fMRI has shown high sensitivity in identification of RSNs modifications in several diseases also in absence of structural modifications. In this narrative review, we provide the state of the art of rs-fMRI studies about physiological and pathological aging processes. First, we introduce the background of resting state; then we review clinical findings provided by rs-fMRI in physiological aging, Mild Cognitive Impairment (MCI), Alzheimer Dementia (AD), and Late Life Depression (LLD). Finally, we suggest future directions in this field of research and its potential clinical applications.


Sign in / Sign up

Export Citation Format

Share Document