64 Culture of bovine oocytes and embryos with metabolic hormones concentrations associated with equine metabolic syndrome

2019 ◽  
Vol 31 (1) ◽  
pp. 157
Author(s):  
D. Bresnahan ◽  
E. Carnevale

Maternal metabolic status could affect fertility and early embryo development due to altered concentrations of metabolic hormones. Equine metabolic syndrome (EMS) is a condition in horses associated with obesity and insulin resistance. Equine metabolic syndrome is accompanied by increased concentrations of insulin and leptin and decreased concentrations of adiponectin, in ovarian follicular fluid (FF) and in systemic circulation (SYST). We sought to determine how altered concentrations of insulin, leptin, and adiponectin (ILA), consistent with those in mares with EMS (EMS) or normal mares (normal), would affect blastocyst formation rates, blastocyst gene expression for metabolism and inner cell mass formation (OCT4, SOX2, COX2, DNMT3a1, HK2, LDH, PDH, and GLUT1), and metabolite uptake from culture media. Because equine oocytes are not available for large-scale study, a bovine model was used in this preliminary study to determine the impact of altered ILA on oocytes and embryos. Bovine ovaries were obtained from an abattoir and embryos produced as previously described using chemically defined media (CDM; Barcelo-Fimbres and Seidel 2007Mol. Reprod. Dev. 74, 1406-1418). Briefly, oocytes were cultured in in vitro maturation medium (IVM), fertilized in FCDM, presumptive zygotes were placed into CDM-1 for ~56h. Cleavage rates were assessed, and embryos were moved to CDM-2 for ~122 additional hours. Treatments consisted of 5 groups: (1) standard oocyte IVM, FCDM and embryo production (EP) system (control), (2) IVM with normal FF ILA and control FCDM and EP, (3) IVM with normal FF ILA and FCDM and EP with normal SYST ILA, (4) IVM with EMS FF ILA and control FCDM and EP, and (5) IVM with EMS FF ILA and FCDM and EP with EMS SYST ILA. Seven days after fertilization, blastocysts were pooled in groups of 5 and placed into 50mL of CDM-2 for 24h. Embryos were removed, and medium was frozen and stored at −80°C to determine metabolite usage via gas chromatography mass spectroscopy. Pooled embryos were washed and placed into RNA lysis solution for relative quantitative PCR. Statistical comparisons were performed using ANOVA with a post-hoc Tukey test. Blastocyst formation rates and gene expression of viability markers were not significantly different among groups. However, aspartate was lower (P=0.02) in spent media from Group 3 (normal FF and SYST ILA) and tended (P=0.09) to be lower in media from Group 5 (EMS FF and SYST ILA) when compared with controls (Group 1). The ILA during early embryo development but not oocyte maturation appeared to be associated with increased uptake of aspartate, a nonessential amino acid, thought to be involved in osmoregulation, cellular signalling, and in mouse embryos, facilitate the metabolism of lactate. In conclusion, the addition of ILA in concentrations observed in normal horses and EMS horses did not affect blastocyst formation rates or markers of embryo viability, although embryo metabolism could have been altered.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


Reproduction ◽  
2014 ◽  
Vol 148 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Eugenia Mercedes Luque ◽  
Pedro Javier Torres ◽  
Nicolás de Loredo ◽  
Laura María Vincenti ◽  
Graciela Stutz ◽  
...  

In order to clarify the physiological role of ghrelin in gestation, we evaluated the effects of administration of exogenous ghrelin (2 or 4 nmol/animal per day) or its antagonist (6 nmol/animal per day of (d-Lys3)GHRP6) on fertilization, early embryo development, and implantation periods in mice. Three experiments were performed, treating female mice with ghrelin or its antagonist: i) starting from 1 week before copulation to 12 h after copulation, mice were killed at day 18 of gestation; ii) since ovulation induction until 80 h later, when we retrieved the embryos from oviducts/uterus, and iii) starting from days 3 to 7 of gestation (peri-implantation), mice were killed at day 18. In experiments 1 and 3, the antagonist and/or the highest dose of ghrelin significantly increased the percentage of atrophied fetuses and that of females exhibiting this finding or a higher amount of corpora lutea compared with fetuses (nCL/nF) (experiment 3: higher nCL/nF-atrophied fetuses: ghrelin 4, 71.4–71.4% and antagonist, 75.0–62.5% vs ghrelin 2, 46.2−15.4% and control, 10–0.0%;n=7–13 females/group;P<0.01). In experiment 2, the antagonist diminished the fertilization rate, and both, ghrelin and the antagonist, delayed embryo development (blastocysts: ghrelin 2, 62.5%; ghrelin 4, 50.6%; and antagonist, 61.0% vs control 78.4%;n=82–102 embryos/treatment;P<0.0001). In experiment 3, additionally, ghrelin (4 nmol/day) and the antagonist significantly diminished the weight gain of fetuses and dams during pregnancy. Our results indicate that not only hyperghrelinemia but also the inhibition of the endogenous ghrelin effects exerts negative effects on the fertilization, implantation, and embryo/fetal development periods, supporting the hypothesis that ghrelin (in ‘adequate’ concentrations) has a physiological role in early gestational events.


2009 ◽  
Vol 21 (9) ◽  
pp. 49
Author(s):  
T. Fullston ◽  
M. Mitchell ◽  
S. Wakefield ◽  
A. Filby ◽  
M. Lane

Environmental stress can disrupt mitochondrial function in the pre-implantation embryo, subsequently hindering embryo viability. Brain tissue is also sensitive to developmental perturbations, and we have previously discovered genes involved in neurological function and epigenetic modification are differentially expressed in blastocysts following mitochondrial dysfunction by amino-oxyacetate (AOA). In this study CBAxC57Bl6 2 cell stage mouse embryos were cultured in 5μM-AOA without pyruvate for 72h to induce mitochondrial dysfunction. Blastocyst stage embryos were then transferred to pseudopregnant recipients and the expression profile of day 18 foetal brains was interrogated using microarray. mRNA from mouse whole brain (4 per treatment) was extracted and analysed using an Affymetrix gene array. Ingenuity Pathway Analysis software identified persistent alterations in gene expression pathways in foetal brain after AOA treatment during embryo culture, that were subsequently confirmed by qPCR. Expression was significantly increased by both array and qPCR (>1.5 fold, p<0.05) for; 1) Eomes (1.9, 2.9 fold respectively), a T-box transcription factor involved in differentiation, cell death and development, 2) Nr4a3 (1.8, 2.2 fold respectively), a steroid hormone receptor and putative transcriptional activator and 3) Nola3 (1.7, 1.9 fold respectively), a small nucleolar ribonucleoprotein involved in rRNA processing. Neurological disease, behavioural disorders, carbohydrate metabolism, cellular growth and proliferation, cell death, DNA replication, recombination and repair pathways also showed altered gene expression (>1.25 fold). qPCR was performed on 28 genes exhibiting the greatest change in expression. 24/28 genes confirmed the array data, and of the 4 genes that did not; two had expression not detected by qPCR (Snhg1, Speer6-ps1), and two contradicted array results (Atp1b3 p=0.05, Stk38l p=0.06). This study links mitochondrial dysfunction during early embryo development and persistent molecular changes in the developing foetal brain. This indicates that insults incurred during early embryo development can cause permanent changes that we predict results from aberrant epigenetic modification.


Reproduction ◽  
2019 ◽  
Vol 158 (4) ◽  
pp. R113-R123 ◽  
Author(s):  
Meritxell Jodar

The paternal contribution to the new individual is not just limited to half the diploid genome. Recent findings have shown that sperm delivers to the oocyte several components, including a complex population of RNAs, which may influence early embryo development and the long-term phenotype of the offspring. Although the majority of sperm RNAs may only represent spermatogenic leftovers with no further function, the male gamete provides a specific set of RNAs to the oocyte that is able to modulate gene expression in the preimplantation embryo. Those sperm transcripts include coding and non-coding RNAs that might either be translated by the oocyte machinery or directly regulate embryo gene expression at the transcriptional or post-transcriptional level. Interestingly, some sperm RNAs seem to be acquired during post-testicular maturation through active communication between sperm and epididymal and seminal exosomes released by the epididymis and the male accessory sex glands, respectively. Exosomes contained in the seminal plasma seem to not only interact with the spermatozoa but also with cells from the female reproductive tract, modulating their gene expression and influencing female immune response triggered by the semen. This review also considers the findings that indicate the role of semen RNAs in preimplantation embryo development and offspring phenotypes. In this regard, different studies supporting the hypothesis of paternal epigenetic inheritance of altered metabolic phenotypes associated with environmental exposures are discussed. Lastly, potential mechanisms that could explain the impact of semen RNAs to both early embryogenesis and paternal epigenetic inheritance are suggested.


2020 ◽  
Vol 21 (15) ◽  
pp. 5365 ◽  
Author(s):  
Mohammad Mehedi Hasan ◽  
Janeli Viil ◽  
Freddy Lättekivi ◽  
James Ord ◽  
Qurat Ul Ain Reshi ◽  
...  

While follicular fluid (FF) is well known to provide an optimal environment for oogenesis, its functional roles following its release into the oviduct during ovulation are currently elusive. We hypothesized that FF and FF-derived extracellular vesicles (EVs) may be conveyors of signals capable of inducing functionally-relevant transcriptional responses in oviductal cells. The aim of this study was, therefore, to evaluate the effect of FF and FF-derived EVs on the transcriptome of primary bovine oviductal epithelial cells (BOECs). We examined the gene expression of BOECs in three conditions: BOECs cultured with FF, FF-derived EVs, and without supplementations. For each condition, cells were cultured for 6 and 24 h. RNA sequencing results revealed that FF had a stronger effect on BOECs gene expression compared to EVs. We detected 488 and 1998 differentially expressed genes (DEGs) with FF treatment in 6 and 24 h, respectively, whereas only 41 DEGs were detected at 6 h following EV treatment. Pathway analysis of the FF-induced DEGs showed that several pathways were highly enriched, notably oxidative phosphorylation, thermogenesis, arachidonic acid metabolism, and steroid hormone biosynthesis. Some of these pathways have a role in sperm survival, fertilization, and early embryo development. In conclusion, the findings of our study demonstrate for the first time that bovine FF and FF-derived EVs can induce changes in the gene expression of the bovine oviductal cells which, although observed in vitro, may be reflective of in vivo responses which may contribute to a favorable periconceptional microenvironment for sperm survival, fertilization, and early embryo development.


2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2008 ◽  
Vol 20 (1) ◽  
pp. 179
Author(s):  
M. Clemente ◽  
P. Lonergan ◽  
C. Borque ◽  
J. de La Fuente ◽  
D. Rizos

Preimplatation embryos grown in vitro are sensitive to their environment, and the conditions of culture can affect developmental potential. Progesterone (P4) is the key hormone responsible for maintenance of pregnancy in mammals, and circulating levels in the early postconception period have been associated with pregnancy success. It is not clear whether P4 acts directly or indirectly on the embryo to alter gene expression and development. The aim of this study was to assess the effect of varying levels of exogenous P4 on the development of bovine zygotes to the blastocyst stage in vitro. A preliminary study was conducted to analyze the media used for culture (stock of P4, SOF, SOF + 1 × 10–7 M P4) on Days 1 (day of culture), 4, and 7 for P4 concentration in 25-μL droplets overlain with mineral oil or 500 μL in wells with or without mineral oil. P4 was measured using an ELISA kit, prepared for human serum or plasma (DE1561 Dimeditec Diagnostics GmbH, Kiel, Germany). Inter- and intra-assay coefficients of variation were 6.63 and 6.42%, respectively, and recovery was 95%. P4 concentration on Day 1 in all media was the expected (40 ng mL–1). However, on Days 4 and 7 in media under mineral oil, the level of P4 was nearly zero (0.1 to 1.6 ng mL–1) compared with the media without mineral oil, which remained unchanged (39 to 40 ng mL–1) through the 7 days of culture. Zygotes (n = 1467) were produced in 8 replicates by in vitro oocyte maturation and fertilization, and were cultured in groups of 40 to 50 in wells of 500 μL without mineral oil in (1) SOF supplemented with 5% fetal calf serum (control–), (2) SOF with ethanol (control+), (3) SOF with P4 0.1 × 10–7 M, (4) SOF with P4 1 × 10–7 M, and (5) SOF with P4 10 × 10–7 M at 39°C, 5% CO2 and 5% O2, with maximum humidity. No significant difference was found between groups in cleavage rate or blastocyst yield on Days 6, 7, and 8 (Table 1). These results indicate that the addition of P4 to the in vitro culture medium (SOF) did not enhance the development of bovine embryos to the blastocyst stage. However, further studies on the quality of these embryos in terms of gene expression are in preparation. Table 1. Effect of P4 on bovine in vitro early embryo development


2018 ◽  
Vol 30 (2) ◽  
pp. 391 ◽  
Author(s):  
C. Liu ◽  
Y. Liu ◽  
K. Larsen ◽  
Y. P. Hou ◽  
H. Callesen

It has been demonstrated that extracellular calcium is necessary in fertilisation and embryo development but the mechanism is still not well understood. The present study mainly focussed on the extracellular calcium effector called the calcium-sensing receptor (CASR) and examined its expression in porcine gametes and embryos and its function during fertilisation and early embryo development. By using reverse transcription polymerase chain reaction, CASR was found to be expressed in porcine oocytes, spermatozoa and embryos at different developmental stages. Functionally, medium supplementation with a CASR agonist or an antagonist during in vitro fertilisation (IVF) and in vitro culture (IVC) was tested. During fertilisation, the presence of a CASR agonist increased sperm penetration rate and decreased polyspermy rate leading to an increased normal fertilisation rate. During embryo development, for the IVF embryos, agonist treatment during IVC significantly increased cleavage rate and blastocyst formation rate compared with the control group. Furthermore, parthenogenetically activated embryos showed similar results with lower cleavage and blastocyst formation rates in the antagonist group than in the other groups. It was concluded that CASR, as the effector of extracellular calcium, modulates porcine fertilisation and early embryo development.


Sign in / Sign up

Export Citation Format

Share Document