Beyond Algal Blooms, Oxygen Deficits and Fish Kills: Chronic, Long-Term Impacts of Nutrient Pollution on Aquatic Ecosystems

2001 ◽  
pp. 103-125 ◽  
Author(s):  
JoAnn M. Burkholder
Shore & Beach ◽  
2020 ◽  
pp. 34-43
Author(s):  
Nicole Elko ◽  
Tiffany Roberts Briggs

In partnership with the U.S. Geological Survey Coastal and Marine Hazards and Resources Program (USGS CMHRP) and the U.S. Coastal Research Program (USCRP), the American Shore and Beach Preservation Association (ASBPA) has identified coastal stakeholders’ top coastal management challenges. Informed by two annual surveys, a multiple-choice online poll was conducted in 2019 to evaluate stakeholders’ most pressing problems and needs, including those they felt most ill-equipped to deal with in their day-to-day duties and which tools they most need to address these challenges. The survey also explored where users find technical information and what is missing. From these results, USGS CMHRP, USCRP, ASBPA, and other partners aim to identify research needs that will inform appropriate investments in useful science, tools, and resources to address today’s most pressing coastal challenges. The 15-question survey yielded 134 complete responses with an 80% completion rate from coastal stakeholders such as local community representatives and their industry consultants, state and federal agency representatives, and academics. Respondents from the East, Gulf, West, and Great Lakes coasts, as well as Alaska and Hawaii, were represented. Overall, the prioritized coastal management challenges identified by the survey were: Deteriorating ecosystems leading to reduced (environmental, recreational, economic, storm buffer) functionality, Increasing storminess due to climate change (i.e. more frequent and intense impacts), Coastal flooding, both Sea level rise and associated flooding (e.g. nuisance flooding, king tides), and Combined effects of rainfall and surge on urban flooding (i.e. episodic, short-term), Chronic beach erosion (i.e. high/increasing long-term erosion rates), and Coastal water quality, including harmful algal blooms (e.g. red tide, sargassum). A careful, systematic, and interdisciplinary approach should direct efforts to identify specific research needed to tackle these challenges. A notable shift in priorities from erosion to water-related challenges was recorded from respondents with organizations initially formed for beachfront management. In addition, affiliation-specific and regional responses varied, such as Floridians concern more with harmful algal blooms than any other human and ecosystem health related challenge. The most common need for additional coastal management tools and strategies related to adaptive coastal management to maintain community resilience and continuous storm barriers (dunes, structures), as the top long-term and extreme event needs, respectively. In response to questions about missing information that agencies can provide, respondents frequently mentioned up-to-date data on coastal systems and solutions to challenges as more important than additional tools.


1975 ◽  
Vol 10 (1) ◽  
pp. 33-41 ◽  
Author(s):  
J. Butcher ◽  
M. Boyer ◽  
CD. Fowle

Abstract Eleven small ponds, lined with polyethylene, were used to assess the consequences of applications of *DursbanR at 0.004, 0.030, 0.100 and 1.000 ppm and AbateR at 0.025 and 0.100 ppm active ingredient. The treated ponds showed a more pronounced long-term increase in pH and dissolved oxygen and decreasing total and dissolved carbon dioxide in comparison with untreated ponds. Algal blooms were of longer duration in treated ponds than in controls. Total photosynthetic productivity was higher in treated ponds but bacterial numbers did not change significantly. Photosynthetic productivity was estimated by following the changes in total carbon dioxide.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1687
Author(s):  
Richard E. Lizotte ◽  
Peter C. Smiley ◽  
Robert B. Gillespie ◽  
Scott S. Knight

Conservation agriculture practices (CAs) have been internationally promoted and used for decades to enhance soil health and mitigate soil loss. An additional benefit of CAs has been mitigation of agricultural runoff impacts on aquatic ecosystems. Countries across the globe have agricultural agencies that provide programs for farmers to implement a variety of CAs. Increasingly there is a need to demonstrate that CAs can provide ecological improvements in aquatic ecosystems. Growing global concerns of lost habitat, biodiversity, and ecosystem services, increased eutrophication and associated harmful algal blooms are expected to intensify with increasing global populations and changing climate. We conducted a literature review identifying 88 studies linking CAs to aquatic ecological responses since 2000. Most studies were conducted in North America (78%), primarily the United States (73%), within the framework of the USDA Conservation Effects Assessment Project. Identified studies most frequently documented macroinvertebrate (31%), fish (28%), and algal (20%) responses to riparian (29%), wetland (18%), or combinations (32%) of CAs and/or responses to eutrophication (27%) and pesticide contamination (23%). Notable research gaps include better understanding of biogeochemistry with CAs, quantitative links between varying CAs and ecological responses, and linkages of CAs with aquatic ecosystem structure and function.


2018 ◽  
Vol 77 (2) ◽  
Author(s):  
Zengling Ma ◽  
Hengguo Yu ◽  
Ronald Thring ◽  
Chuanjun Dai ◽  
Anglv Shen ◽  
...  

Algal bloom has been a subject of much research, especially the occurrence of blue-green algae (cyanobacteria) blooms and their effects on aquatic ecosystems. However, the interaction between green algae blooms and zooplankton community was rarely investigated. In the present study, the effects exerted by Scenedesmus dimorphus (green alga) bloom on the community structure of zooplankton and the top-down control of the bloom process mediated by the zooplankton were evaluated using a series of laboratory cultures. The results showed that a dense S. dimorphus bloom could change the zooplankton community structure by decreasing its diversity indices, leading to the enrichment of a particular zooplankton species, Brachionus calyciflorus. In the presence of mixed species of zooplankton, the density of S. dimorphus in the culture was decreased as determined by a change in total chlorophyll a (Chl a) concentration, which was about 200 μg L-1 lower than that of the zooplankton-free culture. Furthermore, the number of species belonging to Cladocera, Copepoda and Rotifera all decreased, with all the cladocerans disappeared in the co-culture within 2 weeks of culturing, while the density of rotifers increased from 818 (±243) ind L-1 at the time of inoculation to 40733 (±2173) ind L-1 on the 14th day post-inoculation. Grazing of S. dimorphus by the rotifer B. calyciflorus neutralized its growth, and the gradual increase in B. calyciflorus density eventually led to the collapse of the bloom. Furthermore, grazing by B. calyciflorus also led to a decrease in the maximal photochemical efficiency (Fv/Fm) of photosystem II (PSII). The combined changes occurring in the zooplankton community structure during the process of S. dimorphus bloom and the negative effects of grazing on algal growth, morphology and photosynthetic activities confirmed the key role of zooplankton in the control of algal bloom. The results of the study therefore indicated that dense algal blooms caused by non-toxic algae could still remain a threat to aquatic ecosystems.


2018 ◽  
Vol 29 (2) ◽  
Author(s):  
N. O. Roshchyna

In this article, the current and former distribution of higher aquatic vegetation has been analyzed for floodplain lakes, arenas lakes and third terraces lakes in the valleys of large and medium North-Steppe Dnieper rivers. The article is devoted to the current state analysis of the higher aquatic vegetation at North-Steppe Dnieper lakes, its dynamics over a long-term period, as well as the determination of the nature and extent of anthropogenic-climatic changes in vegetation. Anthropogenic influence is a major threat to the development and functioning of most aquatic ecosystems. Since the twentieth century, it has been intensified by trends to long-term climate changes, which are also largely result of human activity. Increasing temperature of the winter season does not contribute to snow accumulation. Reduction of snow accumulation (frequent thaws during the winter), regulation of river flow (formation of a reservoirs cascade and ponds) and accumulation of melt water in artificial reservoirs led to the smoothing of the peak of the spring flood. Thus, the factor that provided spring washing of floodplain lakes, limited their overgrowing by air-water vegetation and their waterlogging disappeared. The anthropogenic factors that influence negatively include: intensification of agriculture, plowing of coastal areas, unreasonable land reclamation, overgrazing, development of transport and engineering infrastructure, urbanization, recreation, and chemical pollution. The presented data was obtained on the basis of processing our own research materials of 2009–2018 and literary and archival materials analysis (the herbarium of the Dnipropetrovs’k National University and the archive of the Research Institute of Biology). Natural Northern Steppe Dnieper lakes are located mainly in river valleys, so the study area was conventionally divided into sections: the large river valley (Dnieper) and the middle rivers valleys (Samara and Orel). Three ecological groups of macrophytes were reviewed and compared: hydatofites (submerged species), pleistophytes (species with floating leaves) and helophytes (air-water species). The vegetation of Dnieper floodplain lakes practically did not change for all three formation groups. The number of immersed plants communities within the floodplains of medium-sized rivers has decreased by three. The pleistophytes and helophytes associations decreased to fragments of associations. The lakes vegetation within the sandy Dnieper terrace practically did not change for all three formation groups. The submerged lakes plants associations within the sandy medium-sized rivers terraces have been reduced by two. As part of the lakes vegetation on the Dnipro saline terraces, fragments of associations of the two species are considered extinct. A new association of southern adventive species Ruppia maritima L. has appeared within the limits of the middle rivers saline terrace. Changes in higher aquatic vegetation are characteristic of all types of lakes. Changes occur in the direction of crowding out higher aquatic vegetation communities by airborne plant communities. The consequence of the anthropogenic-climatic transformation of aquatic ecosystems is increased mineralization, siltation, and, as a result, intensive overgrowing of lakes by aboriginal and adventive species with a wide ecological amplitude (replacement of sensitive to environmental changes species).


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2341
Author(s):  
Soon-Ju Yu ◽  
Ju-Yeon Son ◽  
Ho-Yeong Kang ◽  
Yong-Chul Cho ◽  
Jong-Kwon Im

Long-term changes in air and water temperatures and the resulted stratification phenomena were observed for Soyang Lake (SY), Paldang Lake (PD), Chungju Lake (CJ), and Daecheong Lake (DC) in South Korea. Non-parametric seasonal Kendall and Mann-Kendall tests, Sen slope estimator, and potential energy anomaly (PEA) were applied. The lake surface water temperatures (LSWTs) of SY and DC increased at the same rate (0.125 °C/y), followed by those of CJ (0.071 °C/y) and PD (0.06 °C/y). Seasonally, the LSWT increase rates for all lakes, except PD, were 2–3 times higher than the air temperature increase rates. The lake stratification intensity order was similar to those of the LSWT increases and correlations. SY and DC displayed significant correlations between LSWT (0.99) and PEA (0.91). Thus, the LSWT significantly affected stratification when the water temperature increased. PD demonstrated the lowest correlation between LSWT and PEA. Inflow, outflow, rainfall, wind speed, and retention time were significantly correlated, which varied within and between lakes depending on lake topographical, hydraulic, and hydrological factors. Thus, hydraulic problems and nutrients should be managed to minimize their effects on lake water quality and aquatic ecosystems because lake cyanobacteria can increase as localized water temperatures increase.


1994 ◽  
Vol 51 (10) ◽  
pp. 2274-2285 ◽  
Author(s):  
Brent Wolfe ◽  
Hedy J. Kling ◽  
Gregg J. Brunskill ◽  
Paul Wilkinson

A freeze core taken from Experimental Lakes Area Lake 227 in 1988 contained 321 rhythmically paired, dark and light laminations in the upper 60.7 cm. Tape peels revealed cyclic, seasonal abundance peaks in organic and inorganic remains, which suggested that the couplets are varves. However, comparison between varve chronology and 22 yr of experimental changes in phosphorus (P) and nitrogen (N) loading and their influence on the planktonic community confirmed that the most recent varve-year estimates were 5 or 6 yr too old; this was caused by irregular sedimentation and multiple algal blooms resulting from experimental fertilization since 1969, and indistinct laminations that hampered precise couplet identification and separation. Dated horizons determined from biostratigraphic markers were used to generate compatible profiles between 1-cm slices of Lake 227 137Cs flux and reference fallout records. Nutrient concentration profiles were less helpful, as increases in carbon, N, and, P were gradual and no distinct horizon was identified as a clear marker of eutrophication. Long-term assessment of the varve chronology using 210Pb was hindered by experimental additions of 226Ra to the lake in 1970, although similar sedimentation rates from varve years 1860–1934 suggested that the varve and the deep part of the 210Pb chronologies were comparable.


2021 ◽  
Author(s):  
Rahel Vortmeyer-Kley ◽  
Pascal Nieters ◽  
Gordon Pipa

<p>Ecological systems typically can exhibit various states ranging from extinction to coexistence of different species in oscillatory states. The switch from one state to another is called bifurcation. All these behaviours of a specific system are hidden in a set of describing differential equations (DE) depending on different parametrisations. To model such a system as DE requires full knowledge of all possible interactions of the system components. In practise, modellers can end up with terms in the DE that do not fully describe the interactions or in the worst case with missing terms.</p><p>The framework of universal differential equations (UDE) for scientific machine learning (SciML) [1] allows to reconstruct the incomplete or missing term from an idea of the DE and a short term timeseries of the system and make long term predictions of the system’s behaviour. However, the approach in [1] has difficulties to reconstruct the incomplete or missing term in systems with bifurcations. We developed a trajectory-based loss metric for UDE and SciML to tackle the problem and tested it successfully on a system mimicking algal blooms in the ocean.</p><p>[1] Rackauckas, Christopher, et al. "Universal differential equations for scientific machine learning." arXiv preprint arXiv:2001.04385 (2020).</p>


2015 ◽  
Vol 48 (4) ◽  
pp. 238-252 ◽  
Author(s):  
Yongsik Shin ◽  
Haengsun Yu ◽  
Hakyoung Lee ◽  
Dahye Lee ◽  
Gunwoo Park
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document