scholarly journals Cross-Resistance to Thymidylate Synthase Inhibitors in P-Glycoprotein and Non-P-Glycoprotein Cell Lines

Author(s):  
B. van Triest ◽  
F. Telleman ◽  
H. M. Pinedo ◽  
C. L. van der Wilt ◽  
G. J. Peters
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Meredith S. Showler ◽  
Brian P. Weiser

Abstract It is well established that thymidylate synthase inhibitors can cause cellular toxicity through uracil DNA glycosylase (UNG2)-dependent pathways. Additionally, thymidylate synthase inhibitors and HDAC inhibitors are known to act synergistically in a variety of cancer types. A recent article from J. Transl. Med. links these together by demonstrating widespread depletion of UNG2 levels across a variety of cell lines treated with HDAC inhibitors. Recent findings suggest that UNG2 depletion by HDAC inhibitors would likely be an effective method to sensitize cells to thymidylate synthase inhibitors. This is particularly important for cancer types that are typically resistant to thymidylate synthase inhibitors, such as cells that are deficient in p53 activity.


2007 ◽  
Vol 21 (2) ◽  
pp. 240-248 ◽  
Author(s):  
S. Giudice ◽  
L. Benassi ◽  
G. Bertazzoni ◽  
M.P. Costi ◽  
A. Gelain ◽  
...  

1991 ◽  
Vol 11 (8) ◽  
pp. 3940-3948
Author(s):  
C T Wu ◽  
M Budding ◽  
M S Griffin ◽  
J M Croop

Mammalian multidrug-resistant cell lines, selected for resistance to a single cytotoxic agent, display cross-resistance to a broad spectrum of structurally and functionally unrelated compounds. These cell lines overproduce a membrane protein, the P-glycoprotein, which is encoded by a member(s) of a multigene family, termed mdr or pgp. The amino acid sequence of the P-glycoprotein predicts an energy-dependent transport protein with homology to a large superfamily of proteins which transport a wide variety of substances. This report describes the isolation and characterization of two Drosophila homologs of the mammalian mdr gene. These homologs, located in chromosomal sections 49EF and 65A, encode proteins that share over 40% amino acid identity to the human and murine mdr P-glycoproteins. Fly strains bearing disruptions in the homolog in section 49EF have been constructed and implicate this gene in conferring colchicine resistance to the organism. This work sets the foundation for the molecular and genetic analysis of mdr homologs in Drosophila melanogaster.


1991 ◽  
Vol 11 (8) ◽  
pp. 3940-3948 ◽  
Author(s):  
C T Wu ◽  
M Budding ◽  
M S Griffin ◽  
J M Croop

Mammalian multidrug-resistant cell lines, selected for resistance to a single cytotoxic agent, display cross-resistance to a broad spectrum of structurally and functionally unrelated compounds. These cell lines overproduce a membrane protein, the P-glycoprotein, which is encoded by a member(s) of a multigene family, termed mdr or pgp. The amino acid sequence of the P-glycoprotein predicts an energy-dependent transport protein with homology to a large superfamily of proteins which transport a wide variety of substances. This report describes the isolation and characterization of two Drosophila homologs of the mammalian mdr gene. These homologs, located in chromosomal sections 49EF and 65A, encode proteins that share over 40% amino acid identity to the human and murine mdr P-glycoproteins. Fly strains bearing disruptions in the homolog in section 49EF have been constructed and implicate this gene in conferring colchicine resistance to the organism. This work sets the foundation for the molecular and genetic analysis of mdr homologs in Drosophila melanogaster.


1997 ◽  
Vol 53 (12) ◽  
pp. 1855-1866 ◽  
Author(s):  
Baukelien van Triest ◽  
Herbert M. Pinedo ◽  
Frank Telleman ◽  
Clasina L. van der Wilt ◽  
Gerrit Jansen ◽  
...  

2000 ◽  
Vol 113 (11) ◽  
pp. 2011-2021 ◽  
Author(s):  
T. Litman ◽  
M. Brangi ◽  
E. Hudson ◽  
P. Fetsch ◽  
A. Abati ◽  
...  

Mechanisms of drug resistance other than P-glycoprotein are of increasing interest as the list of newly identified members of the ABC transport family has grown. We sought to characterize the phenotype of the newly discovered ABC transporter encoded by the mitoxantrone resistance gene, MXR, also known as ABCP1 or BCRP. The pharmacodynamics of mitoxantrone and 12 other fluorescent drugs were evaluated by confocal microscopy in four multidrug-resistant human colon (S1) and breast (MCF-7) cancer cell lines. We utilized two sublines, MCF-7 AdVp3000 and S1-M1-80, and detected overexpression of MXR by PCR, immunoblot assay and immunohistochemistry. These MXR overexpressing sublines were compared to cell lines with P-glycoprotein- and MRP-mediated resistance. High levels of cross-resistance were observed for mitoxantrone, the anthracyclines, bisantrene and topotecan. Reduced levels of mitoxantrone, daunorubicin, bisantrene, topotecan, rhodamine 123 and prazosin were observed in the two sublines with high MXR expression. Neither the P-glycoprotein substrates vinblastine, paclitaxel, verapamil and calcein-AM, nor the MRP substrate calcein, were extruded from MCF-7 AdVp3000 and S1-M1-80 cells. Thus, the multidrug-resistant phenotype due to MXR expression is overlapping with, but distinct from, that due to P-glycoprotein. Further, cells that overexpress the MXR protein seem to be more resistant to mitoxantrone and topotecan than cells with P-glycoprotein-mediated multidrug resistance. Our studies suggest that the ABC half-transporter, MXR, is a potent, new mechanism for conferring multiple drug resistance. Definition of its mechanism of transport and its role in clinical oncology is required.


Author(s):  
Radhika Ramaswamy ◽  
J. Srikanth ◽  
C. Umamaheswara Reddy

Objective: Cancer is one of the major deaths occurring worldwide and its prophylaxis demands the daily consumption of extracts or dietary supplements of traditional medicinal plants which possess anticancer activities. This study focuses on the evaluation of the chemo preventive and antiproliferative effects of the active constituents of Indian medicinal plants such as Withaniasomnifera, Phyllanthusemblica and Zingiberofficinale by in silico and in vitro studies.Methods: In silico docking analysis is performed using Molegro Virtual Docker choosing the targets as p-glycoprotein and thymidylate synthase for the identified phytoconstituents. In vitro colorimetric cell metabolic activity assay is performed for the standardized extracts of these plants in various cell lines using the standards.Results: The phytoconstituents in the plants, Withaniasomnifera and Phyllanthusemblica revealed good binding affinity towards thymidylate synthase and p-glycoprotein respectively as compared to that of the standards.Conclusion: Phyllanthusemblica showed a maximal antiproliferative effect on breast cancer cell lines (MCF-7) when compared to the other plant extracts. Zingiber officinalis was found to inhibit HT-29 cell lines to a greater extent and Withaniasomniferum resulted in highest A549 cell death. A combination of these extracts in any dosage form could be used in the therapeutic efficacy in cancer.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 665
Author(s):  
Margot S.F. Roeten ◽  
Johan van Meerloo ◽  
Zinia J. Kwidama ◽  
Giovanna ter Huizen ◽  
Wouter H. Segerink ◽  
...  

At present, 20–30% of children with acute leukemia still relapse from current chemotherapy protocols, underscoring the unmet need for new treatment options, such as proteasome inhibition. Ixazomib (IXA) is an orally available proteasome inhibitor, with an improved safety profile compared to Bortezomib (BTZ). The mechanism of action (proteasome subunit inhibition, apoptosis induction) and growth inhibitory potential of IXA vs. BTZ were tested in vitro in human (BTZ-resistant) leukemia cell lines. Ex vivo activity of IXA vs. BTZ was analyzed in 15 acute lymphoblastic leukemia (ALL) and 9 acute myeloid leukemia (AML) primary pediatric patient samples. BTZ demonstrated more potent inhibitory effects on constitutive β5 and immunoproteasome β5i proteasome subunit activity; however, IXA more potently inhibited β1i subunit than BTZ (70% vs. 29% at 2.5 nM). In ALL/AML cell lines, IXA conveyed 50% growth inhibition at low nanomolar concentrations, but was ~10-fold less potent than BTZ. BTZ-resistant cells (150–160 fold) displayed similar (100-fold) cross-resistance to IXA. Finally, IXA and BTZ exhibited anti-leukemic effects for primary ex vivo ALL and AML cells; mean LC50 (nM) for IXA: 24 ± 11 and 30 ± 8, respectively, and mean LC50 for BTZ: 4.5 ± 1 and 11 ± 4, respectively. IXA has overlapping mechanisms of action with BTZ and showed anti-leukemic activity in primary leukemic cells, encouraging further pre-clinical in vivo evaluation.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
S. Mohana ◽  
M. Ganesan ◽  
N. Rajendra Prasad ◽  
D. Ananthakrishnan ◽  
D. Velmurugan

An amendment to this paper has been published and can be accessed via the original article.


Sign in / Sign up

Export Citation Format

Share Document