Embryonic Development of Blood Vessels

Author(s):  
Françoise Dieterlen-Lièvre ◽  
Luc Pardanaud
2018 ◽  
Vol 67 (2) ◽  
pp. 164-170
Author(s):  
Zoran Ružić ◽  
Zdenko Kanački ◽  
Dragan Žikić ◽  
Gordana Ušćebrka ◽  
Jovan Mirčeta

Summary Chorioallantoic membrane (CAM) is an extraembryonic membrane very frequently used for in vivo studies in various researches. Since researches require a fast method for quantifying the CAM angiogenic response, there is a need to develop a new precise and unbiased method of quantification of angiogenesis in CAM, which would be easy to perform and suitable for analysis of a large number of samples. The objective of this paper is to apply a new method of quantification of angiogenesis in investigation of the development of blood vessels in the CAM, in particular days of embryonic life considered essential for CAM development. The present research included 75 fertilized eggs of heavy hybrid Ross 308. CAM sampling for stereological analyses was in key phases of embryonic development, namely on the 12th, 15th and 19th day. The results of the present investigation show that the increase in embryonic age results in increase in circulation index, which is also an indicator of angiogenic processes developing in CAM. The lowest value of circulation index (0.1952) was recorded on the first sampling day (E12), while the highest value (0.2666) was recorded on the last sampling day (E19). This method may be applied in researching different factors which affect angiogenesis in CAM.


2017 ◽  
Vol 67 (3-4) ◽  
pp. 251-261 ◽  
Author(s):  
Hongliang Zhang ◽  
Peng Shang ◽  
Yawen Zhang ◽  
Ying Zhang ◽  
Xiaolong Tian ◽  
...  

Under hypoxic conditions, angiogenesis in the chorioallantoic membrane exhibits a sensitive response depending on the developmental timing and intensity and duration of the hypoxia. Furthermore, the effects of hypoxia on vascularization in the chorioallantoic membrane are controversial. In this study, we used microscopy to determine the vascular density index of chicken embryonic chorioallantoic membrane and quantitative PCR to examine the expression of the HIF-1α and VEGFA genes. Two levels of hypoxia (15% and 13% O2) and three durations (days 0–10, 11–18, and 0–18) were applied. The results showed that 13% O2 incubation restrained angiogenesis in the chorioallantoic membrane at an early stage of embryonic development as seen on day 6, but incubation under 13% or 15% O2 efficiently stimulated vascularization of the chorioallantoic membrane as seen on days 16 and 18. Notably, 13% O2 incubation caused visible curling of the blood vessels in the chorioallantoic membrane on day 18. The increased vascular density index under hypoxia was accompanied by an increase in the expression of VEGFA and HIF-1α. Curled blood vessels were observed on day 18 under 13% O2 incubation; however, the curling was not a result of VEGFA overexpression. Thus, the present study helps in elucidating vascularization of the chorioallantoic membrane under hypoxic conditions.


2009 ◽  
Vol 336 (2) ◽  
pp. 266-279 ◽  
Author(s):  
Vladimir Ustiyan ◽  
I-Ching Wang ◽  
Xiaomeng Ren ◽  
Yufang Zhang ◽  
Jonathan Snyder ◽  
...  

Fishes ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 35
Author(s):  
Mari Carmen Uribe ◽  
Gabino De la Rosa Cruz ◽  
Adriana García Alarcón ◽  
Juan Carlos Campuzano Caballero ◽  
María Guadalupe Guzmán Bárcenas

Viviparity in teleosts involves, invariably, the ovary in a gestational role. This type of viviparity is due to the combination of unique aspects, different from those found in the rest of vertebrates. These aspects are: The ovary has a saccular structure; the germinal epithelium lines the ovarian lumen; the absence of oviducts; and the intraovarian insemination, fertilization, and gestation. The communication of the germinal zone of the ovary to the exterior is via the caudal zone of the ovary—the gonoduct. The germinal epithelium is composed of oogonia and oocytes scattered individually or in cell nests among somatic epithelial cells. In the ovarian stroma the follicles are included which are formed by the oocyte, which is surrounded by follicular cells and the vascularized theca. The oogenesis comprises three stages: chromatin-nucleolus, previtellogenesis, and vitellogenesis. There is no ovulation, as the oocyte is retained in the follicle. During the insemination, the spermatozoa enter into the ovarian lumen and the intrafollicular fertilization occurs, followed by intrafollicular gestation. The intraovarian gestation of poeciliids involves morphological characteristics associated with the intrafollicular embryogenesis and types of nutrition, such as lecithotrophy and matrotrophy. In lecithotrophy, the nutrients come from the yolk reserves stored during oogenesis, whereas in matrotrophy the nutrients are provided by supplies from maternal tissues to the embryo during gestation. The maternal–embryonic metabolic interchanges converge through the development of the association of maternal and embryonic blood vessels, establishing a follicular placenta.


1953 ◽  
Vol 31 (1) ◽  
pp. 42-51 ◽  
Author(s):  
F. R. Hayes ◽  
D. Pelluet ◽  
Eville Gorham

This is a study of the effects of temperature on morphogenesis, and is an attempt to determine whether the order of appearance of anatomical features can be altered within the limits of survival. The time in days (usually from closure of the blastopore) for features to appear was noted, and from this the rates were calculated, being the reciprocals of days × 103. Rate plotted against temperature gives in general a straight line whose slope may be calculated. Some slopes were: hatching, 4.6; digestive system, 6.4; skeleton, 6.5; nervous function, 8.2; external pigment, 9.6; blood vessels, 10.0; fins, 10.3; eye pigment, 12.5. Thus hatching would be expected to appear precociously at low temperatures, and eye pigment at high temperatures.


2020 ◽  
Author(s):  
Miguel A. Gama Sosa ◽  
Rita De Gasperi ◽  
Gissel M. Perez ◽  
Patrick R. Hof ◽  
Gregory A. Elder

Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document