Expression of Genes for Enzymes of the Flavonoid Biosynthetic Pathway in the Early Stages of the Rhizobium-Legume Symbiosis

Author(s):  
H. I. McKhann ◽  
N. L. Paiva ◽  
R. A. Dixon ◽  
A. M. Hirsch
2021 ◽  
Vol 12 ◽  
Author(s):  
Ghulam Kubra ◽  
Maryam Khan ◽  
Faiza Munir ◽  
Alvina Gul ◽  
Tariq Shah ◽  
...  

Drought is one of the hostile environmental stresses that limit the yield production of crop plants by modulating their growth and development. Peanut (Arachis hypogaea) has a wide range of adaptations to arid and semi-arid climates, but its yield is prone to loss due to drought. Other than beneficial fatty acids and micronutrients, peanut harbors various bioactive compounds including flavonoids that hold a prominent position as antioxidants in plants and protect them from oxidative stress. In this study, understanding of the biosynthesis of flavonoids in peanut under water deficit conditions was developed through expression analysis and correlational analysis and determining the accumulation pattern of phenols, flavonols, and anthocyanins. Six peanut varieties (BARD479, BARI2011, BARI2000, GOLDEN, PG1102, and PG1265) having variable responses against drought stress have been selected. Higher water retention and flavonoid accumulation have been observed in BARI2011 but downregulation has been observed in the expression of genes and transcription factors (TFs) which indicated the maintenance of normal homeostasis. ANOVA revealed that the expression of flavonoid genes and TFs is highly dependent upon the genotype of peanut in a spatiotemporal manner. Correlation analysis between expression of flavonoid biosynthetic genes and TFs indicated the role of AhMYB111 and AhMYB7 as an inhibitor for AhF3H and AhFLS, respectively, and AhMYB7, AhTTG1, and AhCSU2 as a positive regulator for the expression of Ah4CL, AhCHS, and AhF3H, respectively. However, AhbHLH and AhGL3 revealed nil-to-little relation with the expression of flavonoid biosynthetic pathway genes. Correlational analysis between the expression of TFs related to the biosynthesis of flavonoids and the accumulation of phenolics, flavonols, and anthocyanins indicated coregulation of flavonoid synthesis by TFs under water deficit conditions in peanut. This study would provide insight into the role of flavonoid biosynthetic pathway in drought response in peanut and would aid to develop drought-tolerant varieties of peanut.


Plant Science ◽  
2005 ◽  
Vol 168 (4) ◽  
pp. 1097-1107 ◽  
Author(s):  
Vincent Courdavault ◽  
Vincent Burlat ◽  
Benoit St-Pierre ◽  
Nathalie Giglioli-Guivarc’h

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tohru Fujiwara ◽  
Hideo Harigae

Heme is a prosthetic group comprising ferrous iron (Fe2+) and protoporphyrin IX and is an essential cofactor in various biological processes such as oxygen transport (hemoglobin) and storage (myoglobin) and electron transfer (respiratory cytochromes) in addition to its role as a structural component of hemoproteins. Heme biosynthesis is induced during erythroid differentiation and is coordinated with the expression of genes involved in globin formation and iron acquisition/transport. However, erythroid and nonerythroid cells exhibit distinct differences in the heme biosynthetic pathway regulation. Defects of heme biosynthesis in developing erythroblasts can have profound medical implications, as represented by sideroblastic anemia. This review will focus on the biology of heme in mammalian erythroid cells, including the heme biosynthetic pathway as well as the regulatory role of heme and human disorders that arise from defective heme synthesis.


2021 ◽  
Vol 22 (23) ◽  
pp. 12824
Author(s):  
Weixin Liu ◽  
Yi Feng ◽  
Suhang Yu ◽  
Zhengqi Fan ◽  
Xinlei Li ◽  
...  

Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.


2018 ◽  
Vol 200 (13) ◽  
pp. e00665-17 ◽  
Author(s):  
Markus F. F. Arnold ◽  
Jon Penterman ◽  
Mohammed Shabab ◽  
Esther J. Chen ◽  
Graham C. Walker

ABSTRACTSinorhizobium melilotienters into beneficial symbiotic interactions withMedicagospecies of legumes. Bacterial exopolysaccharides play critical signaling roles in infection thread initiation and growth during the early stages of root nodule formation. After endocytosis ofS. melilotiby plant cells in the developing nodule, plant-derived nodule-specific cysteine-rich (NCR) peptides mediate terminal differentiation of the bacteria into nitrogen-fixing bacteroids. Previous transcriptional studies showed that the intensively studied cationic peptide NCR247 induces expression of theexogenes that encode the proteins required for succinoglycan biosynthesis. In addition, genetic studies have shown that someexomutants exhibit increased sensitivity to the antimicrobial action of NCR247. Therefore, we investigated whether the symbiotically activeS. melilotiexopolysaccharide succinoglycan can protectS. melilotiagainst the antimicrobial activity of NCR247. We discovered that high-molecular-weight forms of succinoglycan have the ability to protectS. melilotifrom the antimicrobial action of the NCR247 peptide but low-molecular-weight forms of wild-type succinoglycan do not. The protective function of high-molecular-weight succinoglycan occurs via direct molecular interactions between anionic succinoglycan and the cationic NCR247 peptide, but this interaction is not chiral. Taken together, our observations suggest thatS. melilotiexopolysaccharides not only may be critical during early stages of nodule invasion but also are upregulated at a late stage of symbiosis to protect bacteria against the bactericidal action of cationic NCR peptides. Our findings represent an important step forward in fully understanding the complete set of exopolysaccharide functions during legume symbiosis.IMPORTANCESymbiotic interactions between rhizobia and legumes are economically important for global food production. The legume symbiosis also is a major part of the global nitrogen cycle and is an ideal model system to study host-microbe interactions. Signaling between legumes and rhizobia is essential to establish symbiosis, and understanding these signals is a major goal in the field. Exopolysaccharides are important in the symbiotic context because they are essential signaling molecules during early-stage symbiosis. In this study, we provide evidence suggesting that theSinorhizobium melilotiexopolysaccharide succinoglycan also protects the bacteria against the antimicrobial action of essential late-stage symbiosis plant peptides.


1988 ◽  
Vol 66 (4) ◽  
pp. 288-295 ◽  
Author(s):  
Yukimasa Hayashi ◽  
Chiaki W. Nakagawa ◽  
Duangchan Uyakul ◽  
Kunio Imai ◽  
Minoru Isobe ◽  
...  

Previously we reported that, upon exposure to Cd, Cd-bindimg peptides (Cd-BP1 and Cd-BP2) were induced in the fission yeast and that these Cd-BPs were composed of Cd atoms and multiples of the unit peptide cadystin. In this paper, the changes of relative amounts of cadystin species in each Cd-BP were determined during their induction by Cd in the logarithmically growing yeast. The preferential syntheses of the smaller cadystin species, in the early stages of induction by Cd and of the larger cadystin species at the late stage of induction suggested the biosynthetic pathway of cadystins in the fission yeast. Binding affinities of Cd to glutathione and cadystins indicate that the larger peptides bind Cd more firmly than du the smaller peptides, coinciding with the preferential synthesis of the larger peptides with the higher concentration of Cd in the cell at the late stage of Cd induction.


2013 ◽  
Vol 8 (12) ◽  
pp. e27555 ◽  
Author(s):  
Xiaoqiong Chen ◽  
Tomio Itani ◽  
Xianjun Wu ◽  
Yuuki Chikawa ◽  
Kohei Irifune

2020 ◽  
Author(s):  
María Jesús Sánchez‐Calabuig ◽  
Raúl Fernández‐González ◽  
Meriem Hamdi ◽  
Katrien Smits ◽  
Angela Patricia López‐Cardona ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document