The Importance of Incorporating Both Sexes and Embracing Hormonal Diversity When Conducting Rodent Behavioral Assays

2014 ◽  
pp. 299-321 ◽  
Author(s):  
Sarah E. Mennenga ◽  
Heather A. Bimonte-Nelson
Keyword(s):  
2019 ◽  
Vol 110 (1-2) ◽  
pp. 35-49 ◽  
Author(s):  
Talia Levitas-Djerbi ◽  
Dana Sagi ◽  
Ilana Lebenthal-Loinger ◽  
Tali Lerer-Goldshtein ◽  
Lior Appelbaum

Background: Hypothalamic neurotensin (Nts)-secreting neurons regulate fundamental physiological processes including metabolism and feeding. However, the role of Nts in modulation of locomotor activity, sleep, and arousal is unclear. We previously identified and characterized Nts neurons in the zebrafish hypothalamus. Materials and Methods: In order to study the role of Nts, nts mutant (nts–/–), and overexpressing zebrafish were generated. Results: The expression of both nts mRNA and Nts protein was reduced during the night in wild-type zebrafish. Behavioral assays revealed that locomotor activity was decreased during both day and night, while sleep was increased exclusively during the nighttime in nts–/– larvae. Likewise, inducible overexpression of Nts increased arousal in hsp70:Gal4/uas:Nts larvae. Furthermore, the behavioral response to light-to-dark transitions was reduced in nts–/– larvae. In order to elucidate potential contenders that may mediate Nts action on these behaviors, we profiled the transcriptome of 6 dpf nts–/– larvae. Among other genes, the expression levels of melanin-concentrating hormone receptor 1b were increased in nts–/– larvae. Furthermore, a portion of promelanin-concentrating hormone 1 (pmch1) and pmch2 neurons expressed the nts receptor. In addition, expression of the the two zebrafish melanin-concentrating hormone (Mch) orthologs, Mch1 and Mch2, was increased in nts–/– larvae. Conclusion: These results show that the Nts and Mch systems interact and modulate locomotor activity and arousal.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 156 ◽  
Author(s):  
Pingxi Xu ◽  
Fen Zhu ◽  
Garrison K. Buss ◽  
Walter S. Leal

Since the discovery in the early 1980s that 1-octen-3-ol, isolated from oxen breath, attracts tsetse fly, there has been growing interest in exploring the use of this semiochemical as a possible generic lure for trapping host-seeking mosquitoes. Intriguingly, traps baited with 1-octen-3-ol captured significantly more females of the malaria mosquito, Anopheles gambiae, and the yellow fever mosquito, Aedes aegypti, than control traps, but failed to attract the southern house mosquito, Culex quinquefasciatus. Additionally, it has been demonstrated that this attractant is detected with enantioselective odorant receptors (ORs) expressed only in maxillary palps. On the basis of indoor behavioral assays it has even been suggested that 1-octen-3-ol might be a repellent to the southern house mosquito. Our approach was two-prong, i.e., to isolate 1-octen-3-ol-sensitive ORs expressed in maxillary palps and antennae of southern house female mosquito, and test the hypothesis that this semiochemical is a repellent. An OR with high transcript levels in maxillary palps, CquiOR118b, showed remarkable selectivity towards (R)-1-octen-3-ol, whereas an OR expressed in antennae, CquiOR114b, showed higher preference for (S)-1-octen-3-ol than its antipode. Repellency by a surface landing and feeding assay showed that not only racemic, but enantiopure (R)- and (S)-1-octen-3-ol are repellents at 1% dose thus suggesting the occurrence of other (S)-1-octen-3-ol-sensitive OR(s). Female mosquitoes with ablated maxillary palps were repelled by 1-octen-3-ol, which implies that in addition to OR(s) in the maxillary palps, antennal OR(s) are essential for repellency activity.


1993 ◽  
Vol 71 (8) ◽  
pp. 1511-1515 ◽  
Author(s):  
T. D. Fitzgerald ◽  
F. X. Webster

Behavioral assays show that the steroid 5β-cholestan-3-one, isolated from the abdomen of the larva of the forest tent caterpillar (Malacosoma disstria), constitutes the chemical basis of trail following in this insect. Caterpillars follow artificial trails prepared from solvent dilutions of the compound at rates as low as 10−11 g∙mm−11 of trail, though the true threshold sensitivity is likely to be one or two orders of magnitude lower than this. Fourth-instar caterpillars store an average of 58 ng of the pheromone. Field and laboratory studies indicate that the compound is fully competitive with their authentic trails. The caterpillars are highly sensitive to differences in the concentration of the pheromone, preferring stronger trails to weaker trails. The caterpillars also respond to 5β-cholestane-3,24-dione, a chemical not found in M. disstria but known to be a component of the trail pheromone of the eastern tent caterpillar, Malacosoma americanum.


2017 ◽  
Vol 7 (7) ◽  
pp. 2023-2038 ◽  
Author(s):  
Sandeep Raut ◽  
Bhagaban Mallik ◽  
Arpan Parichha ◽  
Valsakumar Amrutha ◽  
Chandan Sahi ◽  
...  

Abstract Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.


Author(s):  
Fabio Papes ◽  
Thiago S. Nakahara ◽  
Antonio P. Camargo

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 439
Author(s):  
Dhriti Tandon ◽  
Kyra Ressler ◽  
Daniel Petticord ◽  
Andrea Papa ◽  
Juliana Jiranek ◽  
...  

Assistance dog training programs can see as many as 60% of their trainees dismissed. Many training programs utilize behavioral assays prior to admittance to identify likely successful candidates, yet such assays can be insconsistent. Recently, four canine retrotransposon mobile element insertions (MEIs) in or near genes WBSCR17 (Cfa6.6 and Cfa6.7), GTF2I (Cfa6.66) and POM121 (Cfa6.83) were identified in domestic dogs and gray wolves. Variations in these MEIs were significantly associated with a heightened propensity to initiate prolonged social contact or hypersociability. Using our dataset of 837 dogs, 228 of which had paired survey-based behavioral data, we discovered that one of the insertions in WBSCR17 is the most important predictor of dog sociable behaviors related to human proximity, measured by the Canine Behavioral Assessment Research Questionnaire (C-BARQ©). We found a positive correlation between insertions at Cfa6.6 and dog separation distress in the form of restlessness when about to be left alone by the owner. Lastly, assistance dogs showed significant heterozygosity deficiency at locus Cfa6.6 and higher frequency of insertions at Cfa6.6 and Cfa6.7. We suggest that training programs could utilize this genetic survey to screen for MEIs at WBSCR17 to identify dogs with sociable traits compatible with successful assistance dog performance.


Diversity ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 6 ◽  
Author(s):  
Zachary J. Cannizzo ◽  
Sara K. Nix ◽  
Isabel C. Whaling ◽  
Blaine D. Griffen

Ecosystem engineers that serve as foundation species shape the ecology and behavior of the species which depend on them. As species shift their geographic ranges into ecosystems they have not previously inhabited, it is important to understand how interactions with novel foundation species alter their behavior. By employing behavioral assays and morphological analyses, we examined how individual morphology and foundation species structure impact the ritualistic aggression behavior of the range shifting mangrove tree crab Aratus pisonii between its historic and colonized habitats. Structure of the foundation species of the colonized salt marsh ecosystem increases the incidence and risk of this behavior over the historic mangrove habitat, potentially negating benefits of ritualizing aggression. Further, docks within the salt marsh, which are structurally analogous to mangroves, mitigate some, but not all, of the increased costs of performing ritualized aggression. Crabs in the salt marsh also had relatively larger claws than conspecifics from the dock and mangrove habitats, which has implications for the risk and outcomes of ritualized interactions. These changes to morphology and behavior highlight the impacts that foundation species structure can have on the morphology, ecology, and behavior of organisms and the importance of studying these impacts in range shifting species.


Sign in / Sign up

Export Citation Format

Share Document