Smartphone-Based Fluorescence Detector for mHealth

Author(s):  
Joshua Balsam ◽  
Hugh Alan Bruck ◽  
Avraham Rasooly
2020 ◽  
Vol 16 ◽  
Author(s):  
Ikko Mikami ◽  
Eri Shibayama ◽  
Kengo Takagi

Background: Determination of a reducing substance based on the reaction between Ce(IV) and a reducing substance and fluorescence detection of Ce(III) generated has been reported as a selective and sensitive method. However, this method could not be applied to the determination of alcohol due to the low reaction rate of alcohol and Ce(IV). Objective: We found that thiosulfate catalytically enhanced reaction of alcohols (such as, methanol, ethanol, and propanol) and Ce(IV). Utilizing this effect, we developed a new method for the determination of alcohols. Results: In the presence of thiosulfate, an increase in fluorescence intensity was detected by injecting alcohol at concentrations of several millimolar, whereas it was not observed even at the concentration of 10% v/v (2 M for ethanol) in the absence of thiosulfate. The optimum detection conditions were determined to be 4.0 mM Ce(IV) sulfate and 0.50 mM thiosulfate, and the detection limit (S/N = 3) of ethanol under these conditions was 1 mM. In the calibration curves, changes in the slope were observed when the alcohol concentrations were approximately 10–25 mM. Using a thiosulfate solution containing ethanol as the reaction solution, a calibration curve without any change in slope was obtained, although the concentration of ethanol at the detection limit increased. The alcohols in the liquor and fuel were successfully analyzed using the proposed detection method as a postcolumn reaction. Conclusion: This new alcohol detection method using a versatile fluorescence detector can be applied to the postcolumn reaction of HPLC omitting need of time-consuming pretreatment processes.


2020 ◽  
Vol 16 (4) ◽  
pp. 428-435
Author(s):  
Ahmed F.A. Youssef ◽  
Yousry M. Issa ◽  
Kareem M. Nabil

Background: Simeprevir is one of the recently discovered drugs for treating hepatitis C which is one of the major diseases across the globe. Objective: The present study involves the development of a new and unique High-Performance Liquid Chromatography (HPLC) method using fluorescence detection for the determination of simeprevir (SIM) in human plasma. Methods: Two methods of extractions were tested, protein precipitation using acetonitrile and liquidliquid extraction. A 25 mM dipotassium hydrogen orthophosphate (pH 7.0)/ACN (50/50; v/v), was used as mobile phase and C18 reversed phase column as the stationary phase. The chromatographic conditions were optimized and the concentration of simeprevir was determined by using the fluorescence detector. Cyclobenzaprine was used as an internal standard. Results: Recovery of the assay method based on protein precipitation was up to 100%. Intra-day and inter-day accuracies range from 92.30 to 107.80%, with Relative Standard Deviation (RSD) range 1.65-8.02%. The present method was successfully applied to a pharmacokinetic study where SIM was administered as a single dose of 150 mg SIM/capsule (Olysio®) to healthy individuals. Conclusion: This method exhibits high sensitivity with a low limit of quantification 10 ng mL-1, good selectivity using fluorescence detection, wide linear application range 10-3000 ng mL-1, good recovery and highly precise and validation results. The developed method can be applied in routine analysis for real samples.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 472
Author(s):  
Florian Lukas Vetter ◽  
Steffen Zobel-Roos ◽  
Jochen Strube

This study proposes a reliable inline PAT concept for the simultaneous monitoring of different product components after chromatography. The feed for purification consisted of four main components, IgG monomer, dimer, and two lower molecular weight components of 4.4 kDa and 1 kDa molecular weight. The proposed measurement setup consists of a UV–VIS diode-array detector and a fluorescence detector. Applying this system, a R2 of 0.93 for the target component, a R2 of 0.67 for the dimer, a R2 of 0.91 for the first side component and a R2 of 0.93 for the second side component is achieved. Root mean square error for IgG monomer was 0.027 g/L, for dimer 0.0047 g/L, for side component 1 0.016 g/L and for the side component 2 0.014 g/L. The proposed measurement concept tracked component concentration reliably down to 0.05 g/L. Zero-point fluctuations were kept within a standard deviation of 0.018 g/L for samples with no IgG concentration but with side components present, allowing a reliable detection of the target component. The main reason inline concentration measurements have not been established yet, is the false-positive measurement of target components when side components are present. This problem was eliminated using the combination of fluorescence and UV–VIS data for the test system. The use of this measurement system is simulated for the test system, allowing an automatic fraction cut at 0.05 g/L. In this simulation a consistent yield of >99% was achieved. Process disturbances for processed feed volume, feed purity and feed IgG concentration can be compensated with this setup. Compared to a timed process control, yield can be increased by up to 12.5%, if unexpected process disturbances occur.


Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 65
Author(s):  
Bazoin Sylvain Raoul Bazié ◽  
Caroline Douny ◽  
Thomas Judicaël Ouilly ◽  
Djidjoho Joseph Hounhouigan ◽  
Aly Savadogo ◽  
...  

Charcoal- or wood-cooked chicken is a street-vended food in Burkina Faso. In this study, 15 samples of flamed chicken and 13 samples of braised chicken were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) with a high-performance liquid chromatography-fluorescence detector. A face-to-face survey was conducted to assess the consumption profiles of 300 men and 300 women. The health risk was assessed based on the margin of exposure (MOE) principle. BaP (14.95–1.75 μg/kg) and 4PAHs (BaP + Chr + BaA + BbF) (78.46–15.14 μg/kg) were eight and five times more abundant at the median level in flamed chickens than in braised ones, respectively. The contents of BaP and 4PAHs in all flamed chicken samples were above the limits set by the European Commission against 23% for both in braised chickens. Women had the highest maximum daily consumption of both braised (39.65 g/day) and flamed chickens (105.06 g/day). At the estimated maximum level of consumption, women were respectively 3.64 (flamed chicken) and 1.62 (braised chicken) times more exposed to BaP and 4PAHs than men. MOE values ranged between 8140 and 9591 for men and between 2232 and 2629 for women at the maximum level of consumption of flamed chickens, indicating a slight potential carcinogenic risk.


2000 ◽  
Vol 32 (6) ◽  
pp. 545-558 ◽  
Author(s):  
Lisa M. Brosseau ◽  
Donald Vesley ◽  
Nancy Rice ◽  
Karen Goodell ◽  
Melissa Nellis ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinxia Wei ◽  
Jia Shao ◽  
Yanan Li ◽  
Yubo Li

Abstract Background To investigate the pharmacokinetics of 6-O-demethylmenisporphine, an oxoisoaporphine alkaloid with significant anti-tumor activities and isolated from Menispermi Rhizoma, a novel and sensitive HPLC assay was established for 6-O-demethylmenisporphine quantification in rat plasma. Methods Peak responses were detected by a highly selective and sensitive fluorescence detector with 426-nm excitation and 514-nm emission wavelengths. Curcumin was employed as the internal standard (IS). A Capcell Pak C18 column (150 mm × 4.6 mm i.d., 5 μm) and an isocratic elution procedure with a flow rate of 1.0 mL/min were used to exclude the endogenous interfering substance. Acetonitrile-water (68:32, v/v) containing 1% formic acid was employed as mobile phase. A 7-point calibration curve that covered the concentration range of 10–2500 ng/mL was constructed. Results A good linearity was observed with a correlation coefficient (r) of 0.9993. The lower limit of quantification for 6-O-demethylmenisporphine was 10 ng/mL. The mean recoveries of analyte in rat plasma exceeded 80.5%. The precision at four concentration levels was within 11.3% and the accuracy ranged from − 7.6 to 6.7%. Conclusion Using this new HPLC-FLD method, the investigation of plasma samples from rats following oral dosing of neat compound and Menispermi Rhizoma extract was successfully conducted. The results will provide a reference for the evaluation of preclinical safety of 6-O-demethylmenisporphine.


Sign in / Sign up

Export Citation Format

Share Document