Detection of Intracellular Proteins by High-Resolution Immunofluorescence Microscopy in Streptococcus pyogenes

Author(s):  
Assaf Raz
Author(s):  
Binyam Mogessie

Abstract Chromosome segregation is conserved throughout eukaryotes. In most systems, it is solely driven by a spindle machinery that is assembled from microtubules. We have recently discovered that actin filaments that are embedded inside meiotic spindles (spindle actin) are needed for accurate chromosome segregation in mammalian oocytes. To understand the function of spindle actin in oocyte meiosis, we have developed high-resolution and super-resolution live and immunofluorescence microscopy assays that are described in this chapter.


1999 ◽  
Vol 5 (S2) ◽  
pp. 476-477
Author(s):  
T. Takizawa ◽  
J. M. Robinson

[Introduction] Immunocytochemical labeling of cryosections, especially immunofluorescence microscopy using semi-thin (0.5-μm) cryosections, has been a powerful technique for detection of cellular antigens in situ and has been widely employed in cell and molecular biology studies. In many cases, immunofluorescence provides sufficient resolution and sensitivity to answer the question being addressed. However, in certain cases the increased resolution of the electron microscope using ultrathin (90-nm) cryosections may be required to define more precisely the localization of specific molecules. Recently, a unique fluorescent ultrasmall immunogold probe, FluoroNanogold (FNG), has been developed for use as a secondary antibody in immunocytochemical applications. It consists of a Fab' fragment of an antibody to which a 1.4-nm gold particle and fluorochromes are conjugated. FNG permits correlative microscopic observation of a sample stained in a single labeling procedure by multiple optical imaging. Recently, we have shown FNG immunocytochemistry on ultrathin cryosections to be valuable for high-resolution correlation of immunofluorescence and immunoelectron microscopy. In the present study, we have examined the utility of FNG as a secondary antibody for immunolabeling of myeloperoxidase (a marker protein for the azurophillic granules) in ultrathin cryosectioned human neutrophils.[Materials and Methods] Purified human neutrophils were fixed with paraformaldehyde, embedded in gelatin, infiltrated with sucrose, cut as ultrathin cryosections, and then collected on formvar film-coated nickel EM grids as described previously. Grids containing ultrathin cryosections were incubated with antimyeloperoxidase and then incubated with FNG.


Author(s):  
John Stanley ◽  
Meeta Desai ◽  
Androulla Efstratiou ◽  
Robert George

mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Benedikt T. Fabian ◽  
Bernd Lepenies ◽  
Gereon Schares ◽  
Jitender P. Dubey ◽  
Furio Spano ◽  
...  

ABSTRACT The environmental stage of the apicomplexan Toxoplasma gondii oocyst is vital to its life cycle but largely understudied. Because oocysts are excreted only by infected felids, their availability for research is limited. We report the adaptation of an agarose-based method to immobilize minute amounts of oocysts to perform immunofluorescence assays. Agarose embedding allows high-resolution confocal microscopy imaging of antibodies binding to the oocyst surface as well as unprecedented imaging of intracellular sporocyst structures with Maclura pomifera agglutinin after on-slide permeabilization of the immobilized oocysts. To identify new possible molecules binding to the oocyst surface, we used this method to screen a library of C-type lectin receptor (CLR)-human IgG constant region fusion proteins from the group of related CLRs called the Dectin-1 cluster against oocysts. In addition to CLEC7A that was previously reported to decorate T. gondii oocysts, we present experimental evidence for specific binding of three additional CLRs to the surface of this stage. We discuss how these CLRs, known to be expressed on neutrophils, dendritic cells, or macrophages, could be involved in the early immune response by the host, such as oocyst antigen uptake in the intestine. In conclusion, we present a modified immunofluorescence assay technique that allows material-saving immunofluorescence microscopy with T. gondii oocysts in a higher resolution than previously published, which allowed us to describe three additional CLRs binding specifically to the oocyst surface. IMPORTANCE Knowledge of oocyst biology of Toxoplasma gondii is limited, not the least due to its limited availability. We describe a method that permits us to process minute amounts of oocysts for immunofluorescence microscopy without compromising their structural properties. This method allowed us to visualize internal structures of sporocysts by confocal microscopy in unprecedented quality. Moreover, the method can be used as a low- to medium-throughput method to screen for molecules interacting with oocysts, such as antibodies, or compounds causing structural damage to oocysts (i.e., disinfectants). Using this method, we screened a small library of C-type lectin receptors (CLRs) present on certain immune cells and found three CLRs able to decorate the oocyst wall of T. gondii and which were not known before to bind to oocysts. These tools will allow further study into oocyst wall composition and could also provoke experiments regarding immunological recognition of oocysts.


2003 ◽  
Vol 161 (3) ◽  
pp. 593-607 ◽  
Author(s):  
V. Sriram ◽  
K.S. Krishnan ◽  
Satyajit Mayor

Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.


Science ◽  
2020 ◽  
Vol 368 (6488) ◽  
pp. 290-296 ◽  
Author(s):  
Russell T. Walton ◽  
Kathleen A. Christie ◽  
Madelynn N. Whittaker ◽  
Benjamin P. Kleinstiver

Manipulation of DNA by CRISPR-Cas enzymes requires the recognition of a protospacer-adjacent motif (PAM), limiting target site recognition to a subset of sequences. To remove this constraint, we engineered variants of Streptococcus pyogenes Cas9 (SpCas9) to eliminate the NGG PAM requirement. We developed a variant named SpG that is capable of targeting an expanded set of NGN PAMs, and we further optimized this enzyme to develop a near-PAMless SpCas9 variant named SpRY (NRN and to a lesser extent NYN PAMs). SpRY nuclease and base-editor variants can target almost all PAMs, exhibiting robust activities on a wide range of sites with NRN PAMs in human cells and lower but substantial activity on those with NYN PAMs. Using SpG and SpRY, we generated previously inaccessible disease-relevant genetic variants, supporting the utility of high-resolution targeting across genome editing applications.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


Sign in / Sign up

Export Citation Format

Share Document