Direct Imaging of Intracellular Signaling Molecule Responsible for the Bacterial Chemotaxis

Author(s):  
Hajime Fukuoka
2014 ◽  
Vol 7 (319) ◽  
pp. ra32-ra32 ◽  
Author(s):  
H. Fukuoka ◽  
T. Sagawa ◽  
Y. Inoue ◽  
H. Takahashi ◽  
A. Ishijima

2005 ◽  
Author(s):  
Tsung-Ming Shih ◽  
Gretchen L. Snyder ◽  
Allen A. Fienberg ◽  
Stacey Galdi ◽  
Minal Rana ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 371
Author(s):  
Emily Medina ◽  
Su-Hwa Kim ◽  
Miriam Yun ◽  
Won-Gyu Choi

In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants’ growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.


2001 ◽  
Vol 15 (2) ◽  
pp. 135-141 ◽  
Author(s):  
S. Prifti ◽  
P. Mall ◽  
T. Strowitzki ◽  
T. Rabe

2019 ◽  
Vol 73 (1) ◽  
pp. 387-406 ◽  
Author(s):  
Martina Valentini ◽  
Alain Filloux

The intracellular signaling molecule cyclic di-GMP (c-di-GMP) regulates the lifestyle of bacteria and controls many key functions and mechanisms. In the case of bacterial pathogens, a wide variety of virulence lifestyle factors have been shown to be regulated by c-di-GMP. Evidence of the importance of this molecule for bacterial pathogenesis has become so great that new antimicrobial agents are tested for their capacity of targeting c-di-GMP signaling. This review summarizes the current knowledge on this topic and reveals its application for the development of new antivirulence intervention strategies.


2019 ◽  
Vol 7 (11) ◽  
pp. 1945-1950 ◽  
Author(s):  
Weijie Zhang ◽  
Fangjun Huo ◽  
Yongbin Zhang ◽  
Caixia Yin

Sulfur dioxide (SO2), as an important anti-oxidant and gaseous signaling molecule, plays fundamental roles in the regulation of intracellular signaling and cell death cellular bioenergetics.


2010 ◽  
Vol 192 (12) ◽  
pp. 2950-2964 ◽  
Author(s):  
S. L. Kuchma ◽  
A. E. Ballok ◽  
J. H. Merritt ◽  
J. H. Hammond ◽  
W. Lu ◽  
...  

ABSTRACT The intracellular signaling molecule cyclic-di-GMP (c-di-GMP) has been shown to influence surface-associated behaviors of Pseudomonas aeruginosa, including biofilm formation and swarming motility. Previously, we reported a role for the bifA gene in the inverse regulation of biofilm formation and swarming motility. The bifA gene encodes a c-di-GMP-degrading phosphodiesterase (PDE), and the ΔbifA mutant exhibits increased cellular pools of c-di-GMP, forms hyperbiofilms, and is unable to swarm. In this study, we isolated suppressors of the ΔbifA swarming defect. Strains with mutations in the pilY1 gene, but not in the pilin subunit pilA gene, show robust suppression of the swarming defect of the ΔbifA mutant, as well as its hyperbiofilm phenotype. Despite the ability of the pilY1 mutation to suppress all the c-di-GMP-related phenotypes, the global pools of c-di-GMP are not detectably altered in the ΔbifA ΔpilY1 mutant relative to the ΔbifA single mutant. We also show that enhanced expression of the pilY1 gene inhibits swarming motility, and we identify residues in the putative VWA domain of PilY1 that are important for this phenotype. Furthermore, swarming repression by PilY1 specifically requires the diguanylate cyclase (DGC) SadC, and epistasis analysis indicates that PilY1 functions upstream of SadC. Our data indicate that PilY1 participates in multiple surface behaviors of P. aeruginosa, and we propose that PilY1 may act via regulation of SadC DGC activity but independently of altering global c-di-GMP levels.


2007 ◽  
Vol 179 (4) ◽  
pp. 733-746 ◽  
Author(s):  
Tal Ilani ◽  
Chand Khanna ◽  
Ming Zhou ◽  
Timothy D. Veenstra ◽  
Anthony Bretscher

Immunological synapse (IS) formation involves receptor–ligand pair clustering and intracellular signaling molecule recruitment with a coincident removal of other membrane proteins away from the IS. As microfilament–membrane linkage is critical to this process, we investigated the involvement of ezrin and moesin, the two ezrin/radixin/moesin proteins expressed in T cells. We demonstrate that ezrin and moesin, which are generally believed to be functionally redundant, are differentially localized and have important and complementary functions in IS formation. Specifically, we find that ezrin directly interacts with and recruits the signaling kinase ZAP-70 to the IS. Furthermore, the activation of ezrin by phosphorylation is essential for this process. In contrast, moesin dephosphorylation and removal, along with CD43, are necessary to prepare a region of the cell cortex for IS. Thus, ezrin and moesin have distinct and critical functions in the T cell cortex during IS formation.


Sign in / Sign up

Export Citation Format

Share Document