Desiccation-Enhanced Maturation and Germination of Date Palm Somatic Embryos Derived from Cell Suspension Culture

Author(s):  
Nazim Boufis ◽  
Khayreddine Titouh ◽  
Lakhdar Khelifi
2008 ◽  
Vol 43 (10) ◽  
pp. 1325-1330 ◽  
Author(s):  
Lucymeire Souza Morais-Lino ◽  
Janay Almeida dos Santos-Serejo ◽  
Sebastião de Oliveira e Silva ◽  
José Raniere Ferreira de Santana ◽  
Adilson Kenji Kobayashi

The objective of this study was to establish cell suspension culture and plant regeneration via somatic embryogenesis of a Brazilian plantain, cultivar Terra Maranhão, AAB. Immature male flowers were used as explant source for generating highly embryogenic cultures 45 days after inoculation, which were used for establishment of cell suspension culture and multiplication of secondary somatic embryos. Five semisolid culture media were tested for differentiation, maturation, somatic embryos germination and for plant regeneration. An average of 558 plants per one milliliter of 5% SCV (settled cell volume) were regenerated in the MS medium, with 11.4 µM indolacetic acid and 2.2 µM 6-benzylaminopurine. Regenerated plants showed a normal development, and no visible somaclonal variation was observed in vitro. It is possible to regenerate plants from cell suspensions of plantain banana cultivar Terra using MS medium supplemented with 11.4 µM of IAA and 2.2 µM of BAP.


2018 ◽  
Vol 42 (5) ◽  
pp. 464-473 ◽  
Author(s):  
Poornananda Madhava Naik ◽  
Jameel Mohammed Al-Khayri

ABSTRACT Date palm accumulates a wide range of secondary metabolites high in nutritional and therapeutic value. In the present study, date palm (Phoenix dactylifera L., cv. Shaishi) shoot-tip-induced callus was used to establish cell suspension cultures in Murashige and Skoog (MS) liquid medium containing 1.5 mg L-1 2-isopentenyladenine (2iP) and 10 mg L-1 naphthaleneacetic acid (NAA). To study the growth kinetics, cultures were maintained for 12 weeks during which weekly measurements were carried out to determine the biomass accumulation based on packed cell volume (%), fresh weight and dry weight (g). In addition, weekly determination of polyphenols (catechin, caffeic acid, kaempferol, and apigenin) was carried out using high performance liquid chromatography (HPLC). The 11-week-old culture was found highest in the production of biomass (62.9 g L-1 fresh weight and 7.6 g L-1 dry weight) and polyphenols (catechin-155.9 µg L-1, caffeic acid-162.7 µg L-1, kaempferol-89.7 µg L-1, and apigenin-242.7 µg L-1) from the cell suspension cultures. This is the first report on the production of polyphenols from the cell suspension culture of date palm. This study facilitates further development of large-scale production of polyphenols and the utilization of bioreactors.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4669
Author(s):  
Jameel Mohammed Al-Khayri ◽  
Poornananda Madhava Naik

Plants that synthesize bioactive compounds that have high antioxidant value and elicitation offer a reliable in vitro technique to produce important nutraceutical compounds. The objective of this study is to promote the biosynthesis of these phenolic compounds on a large scale using elicitors in date palm cell suspension culture. Elicitors such as pectin, yeast extract (YE), salicylic acid (SA), cadmium chloride (CdCl2), and silver nitrate (AgNO3) at 50, 100, and 200 mg/L concentrations are used. The effects of elicitors on cell culture were determined in terms of biomass [packed cell volume (PCV), fresh and dry weight], antioxidant activity, and phenolic compounds (catechin, caffeic acid, kaempferol, apigenin) were determined using high-performance liquid chromatography (HPLC). Results revealed that enhanced PCV (12.3%), total phenolic content [317.9 ± 28.7 mg gallic acid equivalents (GAE)/100 g of dry weight (DW)], and radical scavenging activity (86.0 ± 4.5%) were obtained in the 50 mg/L SA treated cell culture of Murashige and Skoog (MS) medium. The accumulation of optimum catechin (26.6 ± 1.3 µg/g DW), caffeic acid (31.4 ± 3.8 µg/g DW), and kaempferol (13.6 ± 1.6 µg/g DW) was found in the 50 mg/L SA-treated culture when compared to the control. These outcomes could be of great importance in the nutraceutical and agronomic industries.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 664
Author(s):  
M. Moniruzzaman ◽  
Yun Zhong ◽  
Zhifeng Huang ◽  
Huaxue Yan ◽  
Lv Yuanda ◽  
...  

Agrobacterium-mediated transformation of epicotyl segment has been used in Citrus transgenic studies. The approach suffers, however, from limitations such as occasionally seed unavailability, the low transformation efficiency of juvenile tissues and the high frequency of chimeric plants. Therefore, a suspension cell culture system was established and used to generate transgenic plants in this study to overcome the shortcomings. The embryonic calli were successfully developed from undeveloped ovules of the three cultivars used in this study, “Sweet orange”-Egyptian cultivar (Citrus sinensis), “Shatangju” (Citrus reticulata) and “W. Murcott” (Citrus reticulata), on three different solid media. Effects of media, genotypes and ages of ovules on the induction of embryonic calli were also investigated. The result showed that the ovules’ age interferes with the callus production more significantly than media and genotypes. The 8 to 10 week-old ovules were found to be the best materials. A cell suspension culture system was established in an H+H liquid medium. Transgenic plants were obtained from Agrobacterium-mediated transformation of cell suspension as long as eight weeks subculture intervals. A high transformation rate (~35%) was achieved by using our systems, confirming BASTA selection and later on by PCR confirmation. The results demonstrated that transformation of cell suspension should be more useful for the generation of non-chimeric transgenic Citrus plants. It was also shown that our cell suspension culture procedure was efficient in maintaining the vigor and regeneration potential of the cells.


Sign in / Sign up

Export Citation Format

Share Document