TEM Methods for Observation of the Bone-Implant Interface

Author(s):  
Joseph Hemmerlé
Keyword(s):  
Author(s):  
Julie A. Martini ◽  
Robert H. Doremus

Tracy and Doremus have demonstrated chemical bonding between bone and hydroxylapatite with transmission electron microscopy. Now researchers ponder how to improve upon this bond in turn improving the life expectancy and biocompatibility of implantable orthopedic devices.This report focuses on a study of the- chemical influences on the interfacial integrity and strength. Pure hydroxylapatite (HAP), magnesium doped HAP, strontium doped HAP, bioglass and medical grade titanium cylinders were implanted into the tibial cortices of New Zealand white rabbits. After 12 weeks, the implants were retrieved for a scanning electron microscopy study coupled with energy dispersive spectroscopy.Following sacrifice and careful retrieval, the samples were dehydrated through a graduated series starting with 50% ethanol and continuing through 60, 70, 80, 90, 95, and 100% ethanol over a period of two days. The samples were embedded in LR White. Again a graduated series was used with solutions of 50, 75 and 100% LR White diluted in ethanol.


2020 ◽  
Vol 27 (6) ◽  
pp. 854-902 ◽  
Author(s):  
Raluca Ion ◽  
Madalina Georgiana Necula ◽  
Anca Mazare ◽  
Valentina Mitran ◽  
Patricia Neacsu ◽  
...  

TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.


2021 ◽  
Vol 263 ◽  
pp. 124432
Author(s):  
Vahid Zarghami ◽  
Mohammad Ghorbani ◽  
Kamran Pooshang Bagheri ◽  
Mohammad Ali Shokrgozar

2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eduardo Anitua ◽  
Andreia Cerqueira ◽  
Francisco Romero-Gavilán ◽  
Iñaki García-Arnáez ◽  
Cristina Martinez-Ramos ◽  
...  

Abstract Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC–MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9). Results Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05). Conclusions The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone.


2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


Sign in / Sign up

Export Citation Format

Share Document