Monitoring of Growth, Physiology, and Productivity of Animal Cells by Flow Cytometry

Author(s):  
Silvia Carroll ◽  
Mariam Naeiri ◽  
Mohamed Al-Rubeai
BioTechniques ◽  
2000 ◽  
Vol 28 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Michelle B.A. Keith ◽  
Patrick J. Farrell ◽  
Kostas Iatrou ◽  
Leo A. Behie
Keyword(s):  

1956 ◽  
Vol 103 (2) ◽  
pp. 273-284 ◽  
Author(s):  
Theodore T. Puck ◽  
Philip I. Marcus ◽  
Steven J. Cieciura

Two methods for simple and rapid plating of single HeLa cells, human, carcinomatous cells, are described. These result in growth and formation of colonies from each single cell. One of these procedures uses irradiated, non-multiplying "feeder" cells to condition the medium. The second requires more gentle handling of the cells, but otherwise is virtually the same as that used in plating bacteria on semisolid, nutrient media. By extension of these methods, it is possible to isolate single mutant colonies and grow pure clonal stocks of animal cells. These genetically uniform strains are much more homogeneous in their behavior than the parental HeLa cell population. Growth curves obtained from developing colonies are highly reproducible. The most active mutant stocks so far isolated display a generation time of 18 to 20 hours. In pooled human serum HeLa cells assume a highly stretched, ameboid form, with marked motility; whereas growth of the same cells in a variety of non-human sera results in tightly packed, columnar, epithelial-like morphology. The two cell types possess volumes, nuclear cross-sections, plating efficiencies, and generation times which are identical within experimental error, but display widely different cross-sectional areas, suggesting that the basic change occurs in the cell surface. It is conceivable that this change may be related to that which enables the cells of a compact tumor to become invasive. Animal cells subjected to the standard trypsinization procedures which involve mechanical trauma and repeated washings in incomplete media leak large amounts of P and suffer impaired ability to reproduce as isolated cells. Application of the methods described in this paper as a tool for quantitative study of normal mammalian cell growth, physiology, genetics, and biochemistry, and the response of cells to drugs, viruses, high energy radiation, and other agents have been indicated.


2010 ◽  
Vol 1 (1) ◽  
pp. 8 ◽  
Author(s):  
Sergio Ochatt ◽  
Anne Moessner

Compared to animal cells, plant cells are typically non-spherical, which may bias morphometric and fluorimetric analyses, including flow cytometry and other approaches used in the study of cellular biodiversity. The morphometric study of cotyledonary cells may serve to distinguish between genotypes, as cell shape is clearly an important issue when assessing flour quality and seed digestibility by animals, being affected by the surface and volume of particles. We devised a shape coefficient that resolves these difficulties with pea (Pisum sativum L.), and may find general applicability in cytological studies and for the characterization of biodiversity patterns.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


Author(s):  
Brian Burke

The nuclear envelope is a complex membrane structure that forms the boundary of the nuclear compartment in eukaryotes. It regulates the passage of macromolecules between the two compartments and may be important for organizing interphase chromosome architecture. In interphase animal cells it forms a remarkably stable structure consisting of a double membrane ouerlying a protein meshwork or lamina and penetrated by nuclear pore complexes. The latter form the channels for nucleocytoplasmic exchange of macromolecules, At the onset of mitosis, however, it rapidly disassembles, the membranes fragment to yield small vesicles and the lamina, which is composed of predominantly three polypeptides, lamins R, B and C (MW approx. 74, 68 and 65 kDa respectiuely), breaks down. Lamins B and C are dispersed as monomers throughout the mitotic cytoplasm, while lamin B remains associated with the nuclear membrane vesicles.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


Author(s):  
William W. Thomson ◽  
Elizabeth S. Swanson

The oxidant air pollutants, ozone and peroxyacetyl nitrate, are produced in the atmosphere through the interaction of light with nitrogen oxides and gaseous hydrocarbons. These oxidants are phytotoxicants and are known to deleteriously affect plant growth, physiology, and biochemistry. In many instances they induce changes which lead to the death of cells, tissues, organs, and frequently the entire plant. The most obvious damage and biochemical changes are generally observed with leaves.Electron microscopic examination of leaves from bean (Phaseolus vulgaris L.) tobacco (Nicotiana tabacum L.) and cotton (Gossipyum hirsutum L.) fumigated for .5 to 2 hours with 0.3 -1 ppm of the individual oxidants revealed that changes in the ultrastructure of the cells occurred in a sequential fashion with time following the fumigation period. Although occasional cells showed severe damage immediately after fumigation, the most obvious change was an enhanced clarity of the cell membranes.


Author(s):  
C. H. Haigler ◽  
A. W. Roberts

Tracheary elements, the water-conducting cells in plants, are characterized by their reinforced walls that became thickened in localized patterns during differentiation (Fig. 1). The synthesis of this localized wall involves abundant secretion of Golgi vesicles that export preformed matrix polysaccharides and putative proteins involved in cellulose synthesis. Since the cells are not growing, some kind of endocytotic process must also occur. Many researchers have commented on where exocytosis occurs in relation to the thickenings (for example, see), but they based their interpretations on chemical fixation techniques that are not likely to provide reliable information about rapid processes such as vesicle fusion. We have used rapid freezing to more accurately assess patterns of vesicle fusion in tracheary elements. We have also determined the localization of calcium, which is known to regulate vesicle fusion in plant and animal cells.Mesophyll cells were obtained from immature first leaves of Zinnia elegans var. Envy (Park Seed Co., Greenwood, S.C.) and cultured as described previously with the following exceptions: (a) concentration of benzylaminopurine in the culture medium was reduced to 0.2 mg/l and myoinositol was eliminated; and (b) 1.75ml cultures were incubated in 22 x 90mm shell vials with 112rpm rotary shaking. Cells that were actively involved in differentiation were harvested and frozen in solidifying Freon as described previously. Fractures occurred preferentially at the cell/planchet interface, which allowed us to find some excellently-preserved cells in the replicas. Other differentiating cells were incubated for 20-30 min in 10(μM CTC (Sigma), an antibiotic that fluoresces in the presence of membrane-sequestered calcium. They were observed in an Olympus BH-2 microscope equipped for epi-fluorescence (violet filter package and additional Zeiss KP560 barrier filter to block chlorophyll autofluorescence).


Author(s):  
M.B. Braunfeld ◽  
M. Moritz ◽  
B.M. Alberts ◽  
J.W. Sedat ◽  
D.A. Agard

In animal cells, the centrosome functions as the primary microtubule organizing center (MTOC). As such the centrosome plays a vital role in determining a cell's shape, migration, and perhaps most importantly, its division. Despite the obvious importance of this organelle little is known about centrosomal regulation, duplication, or how it nucleates microtubules. Furthermore, no high resolution model for centrosomal structure exists.We have used automated electron tomography, and reconstruction techniques in an attempt to better understand the complex nature of the centrosome. Additionally we hope to identify nucleation sites for microtubule growth.Centrosomes were isolated from early Drosophila embryos. Briefly, after large organelles and debris from homogenized embryos were pelleted, the resulting supernatant was separated on a sucrose velocity gradient. Fractions were collected and assayed for centrosome-mediated microtubule -nucleating activity by incubating with fluorescently-labeled tubulin subunits. The resulting microtubule asters were then spun onto coverslips and viewed by fluorescence microscopy.


Sign in / Sign up

Export Citation Format

Share Document