Analyzing p53 Regulated DNA Damage Checkpoints by Flow Cytometry

Author(s):  
Lois Resnick-Silverman ◽  
James J. Manfredi
2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 521-534
Author(s):  
Peter M Garber ◽  
Jasper Rine

Abstract The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Δ mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase δ. Thus the specificity of this checkpoint may be more limited than previously recognized.


2015 ◽  
Vol 87 (12) ◽  
pp. 1070-1078 ◽  
Author(s):  
Matus Durdik ◽  
Pavol Kosik ◽  
Jan Gursky ◽  
Lenka Vokalova ◽  
Eva Markova ◽  
...  

2004 ◽  
Vol 112 (5) ◽  
pp. 760-770 ◽  
Author(s):  
Katharine H. Wrighton ◽  
Cecilia M. Prêle ◽  
Andrew Sunters ◽  
W. Andrew Yeudall

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Matus Durdik ◽  
Pavol Kosik ◽  
Eva Markova ◽  
Alexandra Somsedikova ◽  
Beata Gajdosechova ◽  
...  

Abstract Exposure to electromagnetic fields (EMF) has been associated with the increased risk of childhood leukemia, which arises from mutations induced within hematopoietic stem cells often through preleukemic fusion genes (PFG). In this study we investigated whether exposure to microwaves (MW) emitted by mobile phones could induce various biochemical markers of cellular damage including reactive oxygen species (ROS), DNA single and double strand breaks, PFG, and apoptosis in umbilical cord blood (UCB) cells including CD34+ hematopoietic stem/progenitor cells. UCB cells were exposed to MW pulsed signals from GSM900/UMTS test-mobile phone and ROS, apoptosis, DNA damage, and PFG were analyzed using flow cytometry, automated fluorescent microscopy, imaging flow cytometry, comet assay, and RT-qPCR. In general, no persisting difference in DNA damage, PFG and apoptosis between exposed and sham-exposed samples was detected. However, we found increased ROS level after 1 h of UMTS exposure that was not evident 3 h post-exposure. We also found that the level of ROS rise with the higher degree of cellular differentiation. Our data show that UCB cells exposed to pulsed MW developed transient increase in ROS that did not result in sustained DNA damage and apoptosis.


2017 ◽  
Vol 9 (7) ◽  
pp. 12
Author(s):  
Manuela M. Moreira ◽  
Daniel O. Carvalho ◽  
Rui Oliveira ◽  
Björn Johansson ◽  
Luís F. Guido

Brewer’s spent grain (BSG), obtained from barley malt during brewing, contains high amounts of phenolic acids, predominantly ferulic and p-coumaric acids. The protective effects of BSG extracts against oxidative DNA damage induced by H2O2 in Saccharomyces cerevisiae cells were investigated using an optimized yeast comet assay and flow cytometry. The results indicated that BSG extracts from black malt exhibited a 5-fold reduction in the genotoxic effects of H2O2, compared to the 2-fold decrease by the BSG extracts from pilsen malts. Flow cytometry analysis with dichlorofluorescein diacetate demonstrated that the intracellular oxidation of S. cerevisiae is also reduced to approximately 50% in the presence of 20-fold diluted BSG extracts. BSG extracts obtained from pilsen and black malt types exert dose-dependent protective properties against the genotoxic effects induced by ROS and decrease intracellular oxidation of yeast cells.


BioEssays ◽  
1995 ◽  
Vol 17 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Bryn A. Bridges

Open Biology ◽  
2014 ◽  
Vol 4 (3) ◽  
pp. 140008 ◽  
Author(s):  
Thomas Turner ◽  
Thomas Caspari

Peregrine Laziosi (1265–1345), an Italian priest, became the patron saint of cancer patients when the tumour in his left leg miraculously disappeared after he developed a fever. Elevated body temperature can cause tumours to regress and sensitizes cancer cells to agents that break DNA. Why hyperthermia blocks the repair of broken chromosomes by changing the way that the DNA damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) are activated is an unanswered question. This review discusses the current knowledge of how heat affects the ATR–Chk1 and ATM–Chk2 kinase networks, and provides a possible explanation of why homeothermal organisms such as humans still possess this ancient heat response.


Sign in / Sign up

Export Citation Format

Share Document