Histochemical Detection of Lipid Droplets in Cultured Cells

Author(s):  
Michitaka Suzuki ◽  
Yuki Shinohara ◽  
Toyoshi Fujimoto
Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 848 ◽  
Author(s):  
Pingan Chang ◽  
Ling He ◽  
Yu Wang ◽  
Christoph Heier ◽  
Yijun Wu ◽  
...  

Neuropathy target esterase (NTE) is an endoplasmic reticulum (ER)-localized phospholipase that deacylates phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Loss-of-function mutations in the human NTE gene have been associated with a spectrum of neurodegenerative disorders such as hereditary spastic paraplegia, ataxia and chorioretinal dystrophy. Despite this, little is known about structure–function relationships between NTE protein domains, enzymatic activity and the interaction with cellular organelles. In the current study we show that the C-terminal region of NTE forms a catalytically active domain that exhibits high affinity for lipid droplets (LDs), cellular storage organelles for triacylglycerol (TAG), which have been recently implicated in the progression of neurodegenerative diseases. Ectopic expression of the C domain in cultured cells decreases cellular PC, elevates TAG and induces LD clustering. LD interactions of NTE are inhibited by default by a non-enzymatic regulatory (R) region with three putative nucleotide monophosphate binding sites. Together with a N-terminal TMD the R region promotes proper distribution of the catalytic C-terminal region to the ER network. Taken together, our data indicate that NTE may exhibit dynamic interactions with the ER and LDs depending on the interplay of its functional regions. Mutations that disrupt this interplay may contribute to NTE-associated disorders by affecting NTE positioning.


2021 ◽  
Author(s):  
Sukrut Kamerkar ◽  
Jagjeet Singh ◽  
Subham Tripathy ◽  
Hemangi Bhonsle ◽  
Mukesh Kumar ◽  
...  

Coordinated cell function requires inter-organelle communication across Membrane Contact Sites (MCS). Here we deposit ER-enriched microsomes purified from rat liver or from cultured cells on a coverslip in the form of a continuous planar membrane. We visualize real-time protein and lipid exchanges across MCS that form between this ER-mimicking membrane and lipid droplets purified from rat liver. An Optical trap is used to demonstrate physical tethering of individual lipid droplets to the ER-mimicking membrane at MCS, and to directly measure the strength of this tether. In-vitro MCS formation changes dramatically in response to metabolic state and immune activation in the animal. Surprisingly, we find that the Rab18 GTPase and Phosphatidic acid are common molecular factors to control both of these pathways. This assay could possibly be adapted to interrogate MCS formation between other membranes (e.g. mitochondria, peroxisomes, endosomes etc.), and abnormalities therein that cause neurological, metabolic and pathogenic diseases.


1974 ◽  
Vol 15 (1) ◽  
pp. 185-199
Author(s):  
K. R. BRUCKDORFER ◽  
F. C. CRAMP ◽  
A. H. GOODALL ◽  
M. VERRINDER ◽  
J. A. LUCY

As part of a search for chemical agents able to promote the fusion of mouse A 9 fibroblasts, oleylamine, a positively charged compound, has been investigated for its fusogenic properties. In the pH range 5.5-7.5 and in the presence of dextran, fibroblast polykaryons were produced on treatment of monolayers of cultured cells with oleylamine dispersed directly in a modified Eagle's medium at concentrations of not less than 0.111 mg/ml. Electron microscopy demonstrated the absence of a dividing plasma membrane between the constituent nuclei of the polykaryons, and showed clustering of other subcellular organelles around their original parent nuclei. Fusion, which was preceded by rounding and swelling of the cells, occurred between cells in contact after 10-15 min. Oleylamine in lipid droplets containing glyceryl mono- and dioleate also caused swelling and fusion but to a lesser extent. Phosphatidylcholine appeared to have an inhibitory effect on oleylamine-induced fusion: lecithin liposomes containing oleylamine were only weakly fusogenic. The fusion process, but not the preceding swelling, was calcium-dependent; fusion was inhibited by low concentrations of lanthanum ions. While oleylamine inhibited cell division in monolayer cultures and prevented adhesion of fibroblasts in suspension to glass coverslips, oleylamine in lipid droplets was less toxic and is thus potentially more useful in this form for interspecific hybridization experiments.


Heliyon ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. e04182
Author(s):  
Juan C. Stockert ◽  
María C. Carou ◽  
Adriana G. Casas ◽  
María C. García Vior ◽  
Sergio D. Ezquerra Riega ◽  
...  

1984 ◽  
Vol 32 (4) ◽  
pp. 455-460 ◽  
Author(s):  
M C Willingham ◽  
A V Rutherford

The preservation and contrast of membranous structures in cultured cells using various postfixation procedures prior to embedding have been investigated. These include routine OsO4, ferrocyanide-reduced OsO4, osmium-thiocarbohydrazide-osmium (OTO), and ferrocyanide-reduced osmium-thiocarbohydrazide-ferrocyanide-reduced osmium (R-OTO). With standard ethanol-Epon dehydration/embedding techniques, a dramatic improvement in both membrane contrast and preservation of bilayer membrane structure was achieved using preembedding OTO in cultured cells. R-OTO yielded similar enhanced preservation and contrast of membranes. Both of these methods also resulted in an increase in the contrast of diaminobenzidine reaction product from horseradish peroxidase activity, and of lipid droplets and lipoprotein particles. However, R-OTO did not cause the same increase in the density of proteinaceous elements as was seen with the OTO method. Ferrocyanide-reduced osmium alone showed significant advantages for quantitation of immunocytochemistry using ferritin labels with bismuth subnitrate counterstain. These methods should have general usefulness for the preservation of lipid-containing structures in cultured cells.


Author(s):  
Roberta Nardacci ◽  
Francesca Colavita ◽  
Concetta Castilletti ◽  
Daniele Lapa ◽  
Giulia Matusali ◽  
...  

Abstract Background: The pathogenesis of SARS-CoV-2 remains to be defined. Elucidating SARS-CoV-2 cellular localization within cells and its cytopathic effects requires definition. We performed a comparative ultrastructural study of SARS-CoV-2 infection of Vero-6 cells and lung from COVID-19 patients. Main findings: SARS-CoV-2 induces rapid ultrastructural changes and death in Vero cells. Ultrastructural changes in SARS-CoV-2 infection differ from those in SARS-CoV-1. Type II pneumocytes in lung tissue showed prominent altered morphological features with numerous vacuoles and swollen mitochondria with presence of abundant lipid droplets. The accumulation of lipid droplets was the most striking finding we observed in cultured cells and in infected pneumocytes. Virus particles were also found associated with lipo-lysosomes suggesting that they can play an important step in virus assembly.Interpretation: The cytopathology of SARS-CoV-2 appears to be different to that caused by SARS-CoV-1. Our findings highlight important open topics which may represent future targets to contrast the pathogenicity of SARS-CoV-2.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Meredith H Wilson ◽  
Stephen C Ekker ◽  
Steven Arthur Farber

Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real-time from the subcellular to the whole organism level. Fluorescently tagging the lipid-droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.


2019 ◽  
Vol 63 (1) ◽  
Author(s):  
Federico Boschi ◽  
Vanni Rizzatti ◽  
Elena Zoico ◽  
Tommaso Montanari ◽  
Mauro Zamboni ◽  
...  

Lipid accumulation is largely investigated due to its role in many human diseases. The attention is mainly focused on the lipid droplets (LDs), spherical cytoplasmic organelles, which are devoted to the storage of the lipids. The amount of lipid content is often evaluated by measuring LDs size and/or the integrated optical density (IOD) in cultured cells. Both evaluations are directly associated to the lipid content and therefore they are correlated to each other, but a lack of theoretical relationship between size and IOD was observed in literature. Here we investigated the size-IOD relationship of LDs observed in microscopical images of cultured cells. The experimental data were obtained from immature and differentiated 3T3-L1 murine cells, which have been extensively used in studies on adipogenesis. A simple model based on the spherical shape of the LDs and the Lambert-Beer law, which describes the light absorption by an optical thick material, leads to a mathematical relationship. Despite only light rays’ absorption was considered in the model, neglecting their scattering, a very good agreement between the theoretical curve and the experimental data was found. Moreover, a computational simulation corroborates the model indicating the validity of the mathematically theoretical relationship between size and IOD. The theoretical model could be used to calculate the absorption coefficient in the LDs population and it could be applied to seek for morphologically and functionally LDs subpopulations. The identification of LDs dynamic by measuring size and IOD could be related to different pathophysiological conditions and useful for understand cellular lipid-associated diseases.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
T. M. Murad ◽  
Karen Israel ◽  
Jack C. Geer

Adrenal steroids are normally synthesized from acetyl coenzyme A via cholesterol. Cholesterol is also shown to enter the adrenal gland and to be localized in the lipid droplets of the adrenal cortical cells. Both pregnenolone and progesterone act as intermediates in the conversion of cholesterol into steroid hormones. During pregnancy an increased level of plasma cholesterol is known to be associated with an increase of the adrenal corticoid and progesterone. The present study is designed to demonstrate whether the adrenal cortical cells show any dynamic changes during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document