scholarly journals Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Meredith H Wilson ◽  
Stephen C Ekker ◽  
Steven Arthur Farber

Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real-time from the subcellular to the whole organism level. Fluorescently tagging the lipid-droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.

2020 ◽  
Author(s):  
Dianne Lumaquin ◽  
Eleanor Johns ◽  
Joshua Weiss ◽  
Emily Montal ◽  
Olayinka Ooladipupo ◽  
...  

AbstractLipid droplets are lipid storage organelles found in nearly all cell types from adipocytes to cancer cells. Although increasingly implicated in disease, current methods to study lipid droplets require fixation or static imaging which limits investigation of their rapid in vivo dynamics. To address this, we created a lipid droplet transgenic reporter in whole animals and cell culture by fusing tdTOMATO to Perilipin-2 (PLIN2), a lipid droplet structural protein. Expression of this transgene in transparent casper zebrafish enabled in vivo imaging of adipose depots responsive to nutrient deprivation and high-fat diet. Using this system, we tested novel regulators of lipolysis, revealing an unexpected role for nitric oxide in modulating adipocyte lipid droplets. Similarly, we expressed the PLIN2-tdTOMATO transgene in melanoma cells and found that the nitric oxide pathway also regulated lipid droplets in cancer. This model offers a tractable imaging platform to study lipid droplets across cell types and disease contexts.


2010 ◽  
Vol 22 (8) ◽  
pp. 1262 ◽  
Author(s):  
Xing Yang ◽  
Kylie R. Dunning ◽  
Linda L.-Y. Wu ◽  
Theresa E. Hickey ◽  
Robert J. Norman ◽  
...  

Lipid droplet proteins regulate the storage and utilisation of intracellular lipids. Evidence is emerging that oocyte lipid utilisation impacts embryo development, but lipid droplet proteins have not been studied in oocytes. The aim of the present study was to characterise the size and localisation of lipid droplets in mouse oocytes during the periovulatory period and to identify lipid droplet proteins as potential biomarkers of oocyte lipid content. Oocyte lipid droplets, visualised using a novel method of staining cumulus–oocyte complexes (COCs) with BODIPY 493/503, were small and diffuse in oocytes of preovulatory COCs, but larger and more centrally located after maturation in response to ovulatory human chorionic gonadotrophin (hCG) in vivo, or FSH + epidermal growth factor in vitro. Lipid droplet proteins Perilipin, Perilipin-2, cell death-inducing DNA fragmentation factor 45-like effector (CIDE)-A and CIDE-B were detected in the mouse ovary by immunohistochemistry, but only Perilipin-2 was associated with lipid droplets in the oocyte. In COCs, Perilipin-2 mRNA and protein increased in response to ovulatory hCG. IVM failed to induce Perilipin-2 mRNA, yet oocyte lipid content was increased in this context, indicating that Perilipin-2 is not necessarily reflective of relative oocyte lipid content. Thus, Perilipin-2 is a lipid droplet protein in oocytes and its induction in the COC concurrent with dynamic reorganisation of lipid droplets suggests marked changes in lipid utilisation during oocyte maturation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dianne Lumaquin ◽  
Eleanor Johns ◽  
Emily Montal ◽  
Joshua M Weiss ◽  
David Ola ◽  
...  

Lipid droplets are lipid storage organelles found in nearly all cell types from adipocytes to cancer cells. Although increasingly implicated in disease, current methods to study lipid droplets in vertebrate models rely on static imaging or the use of fluorescent dyes, limiting investigation of their rapid in vivo dynamics. To address this, we created a lipid droplet transgenic reporter in whole animals and cell culture by fusing tdTOMATO to Perilipin-2 (PLIN2), a lipid droplet structural protein. Expression of this transgene in transparent casper zebrafish enabled in vivo imaging of adipose depots responsive to nutrient deprivation and high-fat diet. Simultaneously, we performed a large-scale in vitro chemical screen of 1280 compounds and identified several novel regulators of lipolysis in adipocytes. Using our Tg(-3.5ubb:plin2-tdTomato) zebrafish line, we validated several of these novel regulators and revealed an unexpected role for nitric oxide in modulating adipocyte lipid droplets. Similarly, we expressed the PLIN2-tdTOMATO transgene in melanoma cells and found that the nitric oxide pathway also regulated lipid droplets in cancer. This model offers a tractable imaging platform to study lipid droplets across cell types and disease contexts using chemical, dietary, or genetic perturbations.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 104-105
Author(s):  
Shihuan Kuang ◽  
Feng Yue ◽  
Stephanie Oprescu

Abstract Single Cell RNA-sequencing (scRNA-seq) is a powerful technique to deconvolute gene expression of various subset of cells intermingled within a complex tissue, such as the skeletal muscle. We first used scRNA-seq to understand dynamics of cell populations and their gene expression during muscle regeneration in murine limb muscles. This leads to the identification of a subset of satellite cells (the resident stem cells of skeletal muscles) with immune gene signatures in regenerating muscles. Next, we used scRNA-seq to examine gene expression dynamics of satellite cells at various status: quiescence, activation, proliferation, differentiation and self-renewal. This analysis uncovers stage-dependent changes in expression of genes related to lipid metabolism. Further analyses lead to the discovery of previously unappreciated dynamics of lipid droplets in satellite cells; and demonstrate that the abundance of the lipid droplets in newly divided satellite daughter cells is linked to cell fate segregation into differentiation versus self-renewal. Perturbation of lipid droplet dynamics through blocking lipolysis disrupts cell fate homeostasis and impairs muscle regeneration. Finally, we show that lipid metabolism regulates the function of satellite cells through two mechanisms. On one hand, lipid metabolism functions as an energy source through fatty acid oxidation (FAO), and blockage of FAO reduces energy production that is critical for satellite cell function. On the other hand, lipid metabolism generates bioactive molecules that influence signaling transduction and gene expression. In this scenario, lipid metabolism and FAO regulate the intracellular levels of acetyl-coA and selective acetylation of PAX7, a pivotal transcriptional factor underlying function of satellite cells. These results together reveal for the first time a critical role of lipid metabolism and lipid droplet dynamics in muscle satellite cell fate determination and regenerative function; and underscore a potential role of dietary fatty acids in satellite cell-dependent muscle development, growth and regeneration.


Author(s):  
Ji Hyeon You ◽  
Jaewang Lee ◽  
Jong-Lyel Roh

Abstract Background Progesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein inducing dimerization with cytochrome P450, which mediates chemoresistance. Increased PGRMC1 expression is found in multiple types of resistant cancers, but the role of PGRMC1 in the ferroptosis of cancer cells remains unrevealed. Therefore, we examined the role of PGRMC1 in promoting ferroptosis in paclitaxel-tolerant persister cancer cells (PCC). Methods The effects of ferroptosis inducers and PGRMC1 gene silencing/overexpression were tested on head and neck cancer (HNC) cell lines and mouse tumor xenograft models. The results were analyzed about cell viability, death, lipid ROS and iron production, mRNA/protein expression and interaction, and lipid assays. Results PCC had more free fatty acids, lipid droplets, and fatty acid oxidation (FAO) than their parental cells. PCC was highly sensitive to inhibitors of system xc− cystine/glutamate antiporter (xCT), such as erastin, sulfasalazine, and cyst(e)ine deprivation, but less sensitive to (1S,3R)-RSL3. PGRMC1 silencing in PCC reduced ferroptosis sensitivity by xCT inhibitors, and PGRMC1 overexpression in parental cells increased ferroptosis by xCT inhibitors. Lipid droplets were degraded along with autophagy induction and autophagosome formation by erastin treatment in PCC. Lipophagy was accompanied by increased tubulin detyrosination, which was increased by SIRT1 activation but decreased by SIRT1 inhibition. FAO and lipophagy were also promoted by the interaction between lipid droplets and mitochondria. Conclusion PGRMC1 expression increased FAO and ferroptosis sensitivity from in vivo mice experiments. Our data suggest that PGRMC1 promotes ferroptosis by xCT inhibition in PCC.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hai-bo Zhang ◽  
Wen Su ◽  
Hu Xu ◽  
Xiao-yan Zhang ◽  
You-fei Guan

Nonalcoholic fatty liver disease (NAFLD), especially in its inflammatory form (steatohepatitis, NASH), is closely related to the pathogenesis of chronic liver disease. Despite substantial advances in the management of NAFLD/NASH in recent years, there are currently no efficacious therapies for its treatment. The biogenesis and expansion of lipid droplets (LDs) are critical pathophysiological processes in the development of NAFLD/NASH. In the past decade, increasing evidence has demonstrated that lipid droplet-associated proteins may represent potential therapeutic targets for the treatment of NAFLD/NASH given the critical role they play in regulating the biogenesis and metabolism of lipid droplets. Recently, HSD17B13, a newly identified liver-enriched, hepatocyte-specific, lipid droplet-associated protein, has been reported to be strongly associated with the development and progression of NAFLD/NASH in both mice and humans. Notably, human genetic studies have repeatedly reported a robust association of HSD17B13 single nucleotide polymorphisms (SNPs) with the occurrence and severity of NAFLD/NASH and other chronic liver diseases (CLDs). Here we briefly overview the discovery, tissue distribution, and subcellular localization of HSD17B13 and highlight its important role in promoting the pathogenesis of NAFLD/NASH in both experimental animal models and patients. We also discuss the potential of HSD17B13 as a promising target for the development of novel therapeutic agents for NAFLD/NASH.


2011 ◽  
Vol 54 ◽  
pp. S311 ◽  
Author(s):  
S. Clement ◽  
C. Fauvelle ◽  
S. Pascarella ◽  
S. Conzelmann ◽  
V. Kaddai ◽  
...  

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Olan Jackson-Weaver ◽  
Jian Wu ◽  
Yongchao Gou ◽  
Yibu Chen ◽  
Meng Li ◽  
...  

Rationale: Epicardial epithelial-to-mesenchymal trasition (EMT) is a vital process in embryonic heart development. During EMT, epicardial cells acquire migratory and invasive properties, and differentiate into new cell types, including cardiac fibroblasts and coronary smooth muscle cells. Non-histone protein methylation is an emerging modulator of cell signaling. We have recently established a role for protein arginine methyltransferase-1 (PRMT1) in TGF-β-induced EMT in cultured cells. Objective: To determine the role of PRMT1 in epicardial EMT. Methods and Results: We investigated the role of PRMT1 in epicardial EMT in mouse epicardial cells. Embryonic day 9.5 (E9.5) tamoxifen administration of WT1-Cre ERT ;PRMT1 fl/fl ;ROSA-YFP fl/fl mouse embryos was used to delete PRMT1 in the epicardium. Epicardial PRMT1 deletion led to reduced epicardial migration into the myocardium, a thinner compact myocardial layer, and dilated coronary blood vessels at E15.5. Using the epicardial cell line MEC1, we found that PRMT1 siRNA prevented the increase in mesenchymal proteins Slug and Fibronectin and the decrease in epithelial protein E-Cadherin during TGF-β treatment-induced EMT. PRMT1 siRNA also reduced the migration and invasion of MEC1 cells. We further identified that PRMT1 siRNA also increased the expression of p53, a key regulator of the Slug degradation pathway. PRMT1 siRNA increases p53 expression by decreasing p53 degradation, and shifted p53 localization to the cytoplasm. In vitro methylation assays further demonstrated that PRMT1 methylates p53. Knockdown of p53 increased Slug levels and enhanced EMT, establishing p53 as a regulator of epicardial EMT through controlling Slug expression. Furthermore, RNAseq experiments in MEC1 cells demonstrated that 40% (545/1,351) of TGF-β-induced transcriptional changes were prevented by PRMT1 siRNA. Furthermore, when p53 and PRMT1 were simultaneously knocked down, TGF-β induced transcriptional control of 37% (201/545) of these PRMT1-dependent genes was restored. Conclusions: The PRMT1-p53-Slug pathway is necessary for epicardial EMT in cultured MEC1 cells as well as in the epicardium in vivo . Epicardial PRMT1 is required for the development of compact myocardium and coronary blood vessels.


Sign in / Sign up

Export Citation Format

Share Document