In Vitro O-Antigen Ligase Assay

Author(s):  
Xiang Ruan ◽  
Miguel A. Valvano
Keyword(s):  
2001 ◽  
Vol 69 (1) ◽  
pp. 435-445 ◽  
Author(s):  
Jutta Nesper ◽  
Crystal M. Lauriano ◽  
Karl E. Klose ◽  
Dagmar Kapfhammer ◽  
Anita Kraiß ◽  
...  

ABSTRACT Recently we described the isolation of spontaneous bacteriophage K139-resistant Vibrio cholerae O1 El Tor mutants. In this study, we identified phage-resistant isolates with intact O antigen but altered core oligosaccharide which were also affected in galactose catabolism; this strains have mutations in the galU gene. We inactivated another gal gene, galE, and the mutant was also found to be defective in the catabolism of exogenous galactose but synthesized an apparently normal lipopolysaccharide (LPS). Both gal mutants as well as a rough LPS (R-LPS) mutant were investigated for the ability to colonize the mouse small intestine. The galU and R-LPS mutants, but not thegalE mutant, were defective in colonization, a phenotype also associated with O-antigen-negative mutants. By investigating several parameters in vitro, we could show that galU and R-LPS mutants were more sensitive to short-chain organic acids, cationic antimicrobial peptides, the complement system, and bile salts as well as other hydrophobic agents, indicating that their outer membrane no longer provides an effective barrier function. O-antigen-negative strains were found to be sensitive to complement and cationic peptides, but they displayed significant resistance to bile salts and short-chain organic acids. Furthermore, we found thatgalU and galE are essential for the formation of a biofilm in a spontaneous phage-resistant rugose variant, suggesting that the synthesis of UDP-galactose via UDP-glucose is necessary for biosynthesis of the exopolysaccharide. In addition, we provide evidence that the production of exopolysaccharide limits the access of phage K139 to its receptor, the O antigen. In conclusion, our results indicate involvement of galU in V. cholerae virulence, correlated with the observed change in LPS structure, and a role for galU and galE in environmental survival of V. cholerae.


Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3403-3410 ◽  
Author(s):  
G. K. Paterson ◽  
D. B. Cone ◽  
S. E. Peters ◽  
D. J. Maskell

The enzyme phosphoglucomutase (Pgm) catalyses the interconversion of glucose 1-phosphate and glucose 6-phosphate and contributes to glycolysis and the generation of sugar nucleotides for biosynthesis. To assess the role of this enzyme in the biology of the pathogen Salmonella enterica serovar Typhimurium we have characterized a pgm deletion mutant in strain SL1344. Compared to SL1344, SL1344 pgm had impaired growth in vitro, was deficient in the ability to utilize galactose as a carbon source and displayed reduced O-antigen polymer length. The mutant was also more susceptible to antimicrobial peptides and showed decreased fitness in the mouse typhoid model. The in vivo phenotype of SL1344 pgm indicated a role for pgm in the early stages of infection, most likely through deficient O-antigen production. Although pgm mutants in other pathogens have potential as live attenuated vaccine strains, SL1344 pgm was not sufficiently attenuated for such use.


2003 ◽  
Vol 71 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Valorie C. Burns ◽  
Elizabeth J. Pishko ◽  
Andrew Preston ◽  
Duncan J. Maskell ◽  
Eric T. Harvill

ABSTRACT Lipopolysaccharide (LPS), as the major surface molecule of gram-negative bacteria, interacts with the host in complex ways, both inducing and protecting against aspects of inflammatory and adaptive immunity. The membrane-distal repeated carbohydrate structure of LPS, the O antigen, can prevent antibody functions and may vary as a mechanism of immune evasion. Genes of the wbm locus are required for the assembly of O antigen on the animal pathogen Bordetella bronchiseptica and the human pathogen B. parapertussis. However, the important human pathogen B. pertussis lacks these genes and a number of in vitro and in vivo characteristics associated with O antigen in other organisms. To determine the specific functions of O antigen in these closely related Bordetella subspecies, we compared wbm deletion (Δwbm) mutants of B. bronchiseptica and B. parapertussis in a variety of assays relevant to natural respiratory tract infection. Complement was not activated or depleted by wild-type bordetellae expressing O antigen, but both Δwbm mutants activated complement and were highly sensitive to complement-mediated killing in vitro. Although the O-antigen structures appear to be substantially similar, the two mutants differed strikingly in their defects within the respiratory tract. The B. parapertussis Δwbm mutant was severely defective in colonization of the tracheas and lungs of mice, while the B. bronchiseptica Δwbm mutant showed almost no defect. While in vitro characteristics such as serum resistance may be attributable to O antigen directly, the role of O antigen during infection appears to be more complex, possibly involving factors differing among the closely related bordetellae or different interactions between each one and its host.


2002 ◽  
Vol 70 (3) ◽  
pp. 1219-1224 ◽  
Author(s):  
Celia B. Shelton ◽  
Louise M. Temple ◽  
Paul E. Orndorff

ABSTRACT Bordetella avium causes bordetellosis, an upper respiratory disease of birds. Commercially raised turkeys are particularly susceptible. We report here on the use of a recently described B. avium bacteriophage, Ba1, as a tool for investigating the effects of lysogeny and phage resistance on virulence. We found that lysogeny had no effect on any of the in vivo or in vitro measurements of virulence we employed. However, two-thirds (six of nine) spontaneous phage-resistant mutants of our virulent laboratory strain, 197N, were attenuated. Phage resistance was associated, in all cases, with an inability of the mutants to bind phage. Further tests of the mutants revealed that all had increased sensitivities to surfactants, and increased amounts of incomplete (O-antigen-deficient) lipopolysaccharide (LPS) compared to 197N. Hot phenol-water-extracted 197N LPS inactivated phage in a specific and dose-dependent manner. Acid hydrolysis and removal of lipid A had little effect upon the ability of isolated LPS to inactivate Ba1, suggesting that the core region and possibly the O antigen were required for phage binding. All of the mutants, with one exception, were significantly more sensitive to naive turkey serum and, without exception, significantly less able to bind to tracheal rings in vitro than 197N. Interestingly, the three phage-resistant mutants that remained virulent appeared to be O antigen deficient and were among the mutants that were the most serum sensitive and least able to bind turkey tracheal rings in vitro. This observation allowed us to conclude that even severe defects in tracheal ring binding and serum resistance manifested in vitro were not necessarily indicative of attenuation and that complete LPS may not be required for virulence.


2021 ◽  
Author(s):  
Kat Pick ◽  
Tingting Ju ◽  
Benjamin P. Willing ◽  
Tracy Lyn Raivio

In this study, we describe the isolation and characterization of novel bacteriophage vB_EcoP_Kapi1 (Kapi1) isolated from a strain of commensal Escherichia coli inhabiting the gastrointestinal tract of healthy mice. We show that Kapi1 is a temperate phage integrated into tRNA argW of strain MP1 and describe its genome annotation and structure. Kapi1 shows limited homology to other characterized prophages but is most similar to the seroconverting phages of Shigella flexneri, and clusters taxonomically with P22-like phages. The receptor for Kapi1 is the lipopolysaccharide O-antigen, and we further show that Kapi1 alters the structure of its hosts O-antigen in multiple ways.  Kapi1 displays unstable lysogeny, and we find that lysogeny is favored during growth in simulated intestinal fluid. Furthermore, Kapi1 lysogens have a competitive advantage over their non-lysogenic counterparts both in vitro and in vivo, suggesting a role for Kapi1 during colonization. We thus report the use of MP1 and Kapi1 as a model system to explore the molecular mechanisms of mammalian colonization by E. coli to ask what the role(s) of prophages in this context might be.


2004 ◽  
Vol 72 (1) ◽  
pp. 440-450 ◽  
Author(s):  
Jianwu Pei ◽  
Thomas A. Ficht

ABSTRACT Rough mutants of Brucella spp. are attenuated for survival in animal models. However, conflicting in vitro evidence has been obtained concerning the intracellular survival of rough mutants. Transposon-derived rough mutants isolated in our laboratory were previously shown to exhibit small but significant reductions in intracellular survival in a 12-h in vitro assay. Several recent publications report that rough mutants exhibited increased macrophage uptake relative to their smooth parental strains, and a reduction in numbers at the end of the assay has been interpreted as intracellular killing. In an effort to explore the role of O antigen in the interaction between Brucella abortus and macrophages, we have monitored the uptake of rough mutants and survival in vitro by using the murine macrophage cell line J774.A1. The results confirm a 10- to 20-fold-increased uptake of rough mutants over that of smooth organisms under standard conditions. Recovery of the rough mutants persisted up to 8 h postinfection, but at the point when intracellular replication of the smooth organisms was observed, the number of rough organisms recovered declined. Fluorescence microscopy revealed the intracellular multiplication of both smooth and rough organisms, and assays performed in the absence of antibiotic confirmed the replication of the rough organisms. Examination by phase-contrast microscopy revealed the lytic death of macrophages infected with the rough mutants, which was confirmed by the release of lactate dehydrogenase (LDH) from the cell cytoplasm. Thus, the decline in the number of rough organisms was the result of the lysis of macrophages and not from intracellular killing. The cytopathic effect is characterized as necrotic rather than apoptotic cell death based on early LDH release, annexin V and propidium iodide staining, morphological changes of infected cells and nuclei, and glycine protection. The cytopathic effect was observed with macrophages at multiplicities of infection (MOIs) of as low as 20 and was not observed with epithelial cells at MOIs of as high as 2000. These findings suggest a role for O antigen during the early stages of host-agent interaction that is essential in establishing an intracellular niche that maintains and supports persistent intracellular infection resulting in disease.


2004 ◽  
Vol 72 (3) ◽  
pp. 1423-1430 ◽  
Author(s):  
Sunita Shankar-Sinha ◽  
Gabriel A. Valencia ◽  
Brian K. Janes ◽  
Jessica K. Rosenberg ◽  
Chris Whitfield ◽  
...  

ABSTRACT Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection.


1940 ◽  
Vol 40 (5) ◽  
pp. 501-512 ◽  
Author(s):  
D. W. Henderson

The complex group of organisms with cultural and biochemical properties closely similar to the classicalCl. welchiiare at present differentiated into four types according to the quality and number of the toxins they elaboratein vitro.The present study is concerned with the specific affinities of the bacterial antigens of representative strains from these four types. The experiments confirm earlier reports concerning a wide diversity in the specificity of the somatic antigens of the classical type A strains. The bacterial antigens of the types B, C and D, however, have been shown to possess interesting similarities and affinities:(1) The O antigen of type A (classicalCl. welchii) strains is strictly strain specific.(2) The type B (L.D. bacillus) strains isolated in Great Britain share an identical O antigen but a strain from South Africa had a strictly specific O component.(3) The O antigen of the type C (B. paludis) strains isolated in Great Britain is identical.(4) The type D (B. ovitoxicus) strains exhibit wide diversity in the specificity of their O component. Thirteen strains were placed in not less than seven groups.(5) Cross O reactions between various types is negligible or entirely absent.(6) In addition to the heat-stable O antigen certain strains possess a heat-labile somatic component. This antigen occurs only among those types (B and D) that produce ɛ toxin but it is probably not present in all strains.(7) Colony variants reminiscent of the typical rough forms of Gram-negative organisms are frequently encountered among strains of each type. Certain of these forms appear as stable variants and they are characterized serologically by the loss of O antigen specific for the strain.(8) The rough forms still produce toxins characteristic of the type to which the parent culture belongs.


Sign in / Sign up

Export Citation Format

Share Document