Agronomical Overview of Mulch Film Systems

Author(s):  
S. Guerrini ◽  
C. Yan ◽  
M. Malinconico ◽  
P. Mormile
Keyword(s):  
Chemosphere ◽  
2020 ◽  
pp. 128901
Author(s):  
Yin Liu ◽  
Qing Huang ◽  
Wen Hu ◽  
Jiemin Qin ◽  
Yingrui Zheng ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 317-324
Author(s):  
Kayla Snyder ◽  
Christopher Murray ◽  
Bryon Wolff

AbstractTo address agricultural needs of the future, a better understanding of plastic mulch film effects on soil temperature and moisture is required. The effects of different plant type and mulch combinations were studied over a 3.5-month period to better grasp the consequence of mulch on root zone temperature (RZT) and moisture. Measurements of (RZT) and soil moisture for tomato (Solanum lycopersicum), pepper (Capsicum annuum) and carrot (Daucus carota) grown using polyolefin mulch films (black and white-on-black) were conducted in Ontario using a plot without mulch as a control. Black mulch films used in combination with pepper and carrot plants caused similar RZTs relative to uncovered soil, but black mulch film in combination with tomato plants caused a reduction in RZT relative to soil without mulch that increased as plants grew and provided more shade. White-on-black mulch film used in combination with tomatoes, peppers or carrots led to a reduction in RZT relative to soil without mulch that became greater than the temperature of soil without mulch. This insulative capability was similarly observed for black mulch films used with tomato plants. Apart from white-on-black film used in combination with tomatoes, all mulch film and plant combinations demonstrated an ability to stabilize soil moisture relative to soil without mulch. RZT and soil moisture were generally stabilized with mulch film, but some differences were seen among different plant types.


2019 ◽  
Vol 17 (1) ◽  
pp. 23-39
Author(s):  
Simone Wurster ◽  
Luana Ladu ◽  
Dhandy Arisaktiwardhana

Communicating the related environmental benefits of bio-based products to consumers represents a key component of their market uptake. In this regard, the use of ecolabels ISO 14024 Type I play a crucial role. This article identifies and analyzes different criteria proposed by ecolabels for conducting a sustainability assessment of bio-based products considering its entire lifecycle. A comparison of the selected criteria with existing indicators ruled out by the SDGs is proposed. Through expert consultation, the suitability of existing ecolabel criteria for bio-based products has been tested for four applications of biobased products: food packaging from PLA; biobased automotive components; bio-based mulch film; and bio-based insulation material.


2022 ◽  
pp. 316-334
Author(s):  
Simone Wurster ◽  
Luana Ladu ◽  
Dhandy Arisaktiwardhana

Communicating the related environmental benefits of bio-based products to consumers represents a key component of their market uptake. In this regard, the use of ecolabels ISO 14024 Type I play a crucial role. This article identifies and analyzes different criteria proposed by ecolabels for conducting a sustainability assessment of bio-based products considering its entire lifecycle. A comparison of the selected criteria with existing indicators ruled out by the SDGs is proposed. Through expert consultation, the suitability of existing ecolabel criteria for bio-based products has been tested for four applications of biobased products: food packaging from PLA; biobased automotive components; bio-based mulch film; and bio-based insulation material.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 210 ◽  
Author(s):  
Hasan M ◽  
E.W.N. Chong ◽  
Shima Jafarzadeh ◽  
M.T. Paridah ◽  
Deepu Gopakumar ◽  
...  

This study aimed to compare the performance of fabricated microbially induced precipitated calcium carbonate– (MB–CaCO3) based red seaweed (Kappaphycus alvarezii) bio-polymer film and commercial calcium carbonate– (C–CaCO3) based red seaweed bio-film with the conventional biodegradable mulch film. To the best of our knowledge, there has been limited research on the application of commercial CaCO3 (C–CaCO3) and microbially induced CaCO3 (MB–CaCO3) as fillers for the preparation of films from seaweed bio-polymer and comparison with biodegradable commercial plasticulture packaging. The results revealed that the mechanical, contact angle, and biodegradability properties of the polymer composite films incorporated with C–CaCO3 and MB–CaCO3 fillers were comparable or even superior than the conventional biodegradable mulch film. The seaweed polymer film incorporated with MB–CaCO3 showed the highest contact angle of 100.94°, whereas conventional biodegradable mulch film showed a contact angle of 90.25°. The enhanced contact angle of MB–CaCO3 resulted in high barrier properties, which is highly desired in the current scenario for plasticulture packaging application. The water vapor permeability of MB–CaCO3 based seaweed films was low (2.05 ± 1.06 g·m/m2·s·Pa) when compared to conventional mulch film (2.68 ± 0.35 g·m/m2·s·Pa), which makes the fabricated film an ideal candidate for plasticulture application. The highest tensile strength (TS) was achieved by seaweed-based film filled with commercial CaCO3 (84.92% higher than conventional mulch film). SEM images of the fractured surfaces of the fabricated films revealed the strong interaction between seaweed and fillers. Furthermore, composite films incorporated with MB–CaCO3 promote brighter film, better water barrier, hydrophobicity, and biodegradability compared to C–CaCO3 based seaweed polymer film and conventional mulch film. From this demonstrated work, it can be concluded that the fabricated MB–CaCO3 based seaweed biopolymer film will be a promising candidate for plasticulture and agricultural application.


2020 ◽  
Vol 11 (3) ◽  
pp. 115-122
Author(s):  
B. M. Mazur ◽  

The influence of a temporary shelter for plants of strawberry ‘Klerі’ was investigated. It was found that the use of black mulch film on the ridges accelerates the passage of phenological phases. Covering strawberry plants with film and white agrofibre allows you to get ripe berries 10-14 days earlier than with conventional cultivation. Studies have shown that the shelter of strawberry plants with agrofibre and film in the autumn allows plantings to better establish generative organs. Shelter with these materials protects the plants from spring frost during flowering and from rains during the ripening period. Temporary shelter of strawberry plants has a positive effect on the yield and marketability of strawberries and the economic efficiency as a result. So, for strawberries ‘Kleri’, the best option is tunnel cover with a film in the technology on ridges. This possible to obtain a yield 37.9 t/ha with 71% of the first grade berries. The use of agrofibre in the technology on the ridges possible to obtain a yield of 29.5 t/ha with 65% of the first grade berries.


2020 ◽  
Vol 266 ◽  
pp. 115097 ◽  
Author(s):  
Yueling Qi ◽  
Nicolas Beriot ◽  
Gerrit Gort ◽  
Esperanza Huerta Lwanga ◽  
Harm Gooren ◽  
...  
Keyword(s):  

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1618
Author(s):  
Mauro B. D. Tofanelli ◽  
Sam E. Wortman

Growers are interested in biodegradable alternatives to petroleum-based polyethylene mulch film (PEM). However, many growers cite limited knowledge about biodegradable mulch films (BDMs) as a significant barrier to adoption. Agronomic field tests of BDMs are often limited temporally or spatially, and the variability of performance results relative to PEM may be contributing to this perceived knowledge gap. Our objective was to use data available in the scientific literature to provide the first quantitative performance benchmark of BDMs against PEM. We extracted data from 66 articles for meta-analysis. Response ratios were calculated for comparison of BDMs relative to black PEM, and differences among categorical groups were determined using 95% bootstrap confidence intervals. Overall, BDMs reduced soil temperature by 4.5% ± 0.8% (±one standard error) compared to PEM, and temperatures were coolest beneath paper-based BDM. Starch-polyester BDM was less effective than PEM for weed control, but paper-based BDM reduced weed density and biomass by 85.7% ± 9.2%. Paper-based BDMs were particularly useful for controlling Cyperus spp. weeds. Despite differences in soil temperature and weed suppression, crop yields were not different between BDMs and PEM. Future research should focus on reducing costs, adding functional value, and increasing the biodegradability of BDMs.


Sign in / Sign up

Export Citation Format

Share Document