Static Analysis of a Two-Platform Planar Cable-Driven Parallel Robot with Unlimited Rotation

Author(s):  
Thomas Reichenbach ◽  
Philipp Tempel ◽  
Alexander Verl ◽  
Andreas Pott
2011 ◽  
Vol 2-3 ◽  
pp. 302-307 ◽  
Author(s):  
Tao Yu ◽  
Qing Kai Han

In the paper, a novel new gravity-constrained (GC) three-wire-driven (TWD) parallel robot is proposed. With its mechanism model, three typical kinematics analytical models, including horizontal up-down motion, pitching motion and heeling motion and their corresponding simulations are given in detail. In static analysis, the change of tensions in the wires is calculated based on previous kinematics analysis. The simulation results show the robot has good movement stability. The paper can provide useful materials to study of dynamics and control on wire-driven robot.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 323
Author(s):  
Ying-Chi Liu ◽  
Kosuke Irube ◽  
Yukio Takeda

When designing rehabilitation robots, there remains the challenge of ensuring the comfort and safety of users, especially for wearable rehabilitation robots that interact with human limbs. In this paper, we present a kineto-static analysis of the 3-RPS parallel wrist rehabilitation robot, taking into account the soft characteristics of the human limb and its kinematic mobility. First, the human upper-limb model was made to estimate the interaction force and moment through inverse kinematic analysis. Second, a static analysis was conducted to obtain the force and moment acting on the human limb, which is directly related to the user’s comfort and safety. Then, the design parameters of the 3-RPS robot were obtained by generic optimization through kineto-static analysis. Finally, the influence of the parasitic motion of the 3-RPS robot and the initial offset between the wrist center and the robot moving platform were discussed. Through the analysis results, we provide effective solutions to ensure the safety and comfort of the user.


Author(s):  
Ishan Chawla ◽  
Pushparaj Mani Pathak ◽  
Leila Notash ◽  
Arun Kumar Samantaray ◽  
Qingguo Li ◽  
...  

Author(s):  
Guillaume Jeanneau ◽  
Vincent Bégoc ◽  
Sébastien Briot

Abstract This paper introduces a geometrico-static analysis of an intrinsically safe parallel manipulator called R-Min. This robot was designed to reduce the risk of injury during a collision with a human operator, thanks to an underactuated architecture which enables large internal displacements in case of a collision. Indeed, the R-Min architecture is based on a modification of the well-known planar five-bar mechanism, where additional passive joints are introduced on the distal links in order to create a planar seven-bar mechanism with two degrees of underactuation. These two additional degrees of freedom are passively driven through the use of a supplementary passive leg, in which a tension spring is mounted between the base and the end-effector. In this paper, the conditions satisfying the equilibrium and the stability of the mechanism are introduced, based on a geometrico-static analysis. The direct and inverse problems are then solved using a numerical approach. Solutions to both problems are presented and classified. One subset of solutions to the inverse problem is isolated and projected in the Cartesian space in order to obtain the payload-invariant workspace of the R-Min robot.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
J. Hubert ◽  
J.-P. Merlet

Singularity is a major problem for parallel robots as in these configurations the robot cannot be controlled, and there may be infinite forces/torques in its joints, possibly leading to a robot breakdown. In the recent years classification and detection of singularities have made large progress. However, the issue of closeness to a singularity is still open and we propose in this paper an approach that is based on a static analysis. Our measure of closeness to a singularity is based on the very practical issue of having the joint forces/torques lower than a given threshold. We consider a planar parallel robot whose end-effector has a constant orientation and is submitted to a known wrench and we show that it is possible to compute the border of the region that describes all possible end-effector location for which the joint forces are lower than the fixed threshold.


2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2009 ◽  
Vol 32 (4) ◽  
pp. 730-739 ◽  
Author(s):  
Xin-Song WU ◽  
Zhou-Yi ZHOU ◽  
Ye-Ping HE ◽  
Hong-Liang LIANG ◽  
Chun-Yang YUAN

Sign in / Sign up

Export Citation Format

Share Document