Optimizing Setting of Open Source Fused Deposition Modeling 3D Printer

Author(s):  
Silvester Poljak ◽  
Ronald Bašt’ovanský ◽  
Pavol Podhora
2021 ◽  
Vol 11 (7) ◽  
pp. 3197
Author(s):  
Jose Luis Saorin ◽  
Manuel Drago Diaz-Alemán ◽  
Jorge De la Torre-Cantero ◽  
Cecile Meier ◽  
Ithaisa Pérez Conesa

The adoption of open-source digital manufacturing technologies in small art workshops may improve their competitiveness. Pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) can be implemented in the procedures of artistic casting. However, models printed by PLA are limited to approximate minimum sizes of 3 cm, and the optimal layer height resolution is 0.1 mm. These sizes and resolutions are not suitable for creating microsculptures used, in many cases, in jewelry. An alternative to solve this limitation, is to use a DMLS (Direct Metal Laser Sintering) 3D printer. However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. This work detailed the design and validation of a DLP (Digital Light Processing) 3D printer, using backlit LCD (Liquid Crystal Display) screens with ultraviolet light. Its development is totally “open source” and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. Most parts can be manufactured in low cost FDM (Fused Deposition Modeling) 3D printers. The result is an affordable, high resolution (0.021 mm), and open-design printer that can be implemented in artistic contexts.


Author(s):  
Lamis R. Darwish ◽  
Mohamed T. El-Wakad ◽  
Mahmoud Farag

Abstract The extrusion systems of the widespread Fused Deposition Modeling (FDM) 3D printers enable printing only with materials in the filament form. This property hinders the usage of these FDM 3D printers in many fields where the printing materials are in forms other than filaments. Thus, this paper proposes a Heated Inductive-enabled Syringe Pump Extrusion (HISPE) multifunction open-source module with a potential application in bioprinting (i.e., extrusion-based bioprinting). The proposed HISPE module is designed to be cost-effective, simple, and easy to replicate. It is capable of replacing the conventional extrusion system of any open-source cartesian FDM 3D printer. This module widens both the range of the FDM 3D printing materials (e.g., bioinks, biopolymers, blends of materials, or composites) and their forms (e.g., hydrogels, powder, pellets, or flakes). The capabilities of the proposed module were investigated through 3D printing bone scaffolds with a filament diameter of 400 µm and pore size of 350 µm by a Polycaprolactone (PCL) biodegradable polymer in the pellets form. The morphological accuracy of the printed scaffolds was investigated by SEM. The investigation results confirm the accurateness of the proposed HISPE module in printing high-precision models.


2016 ◽  
Vol 859 ◽  
pp. 15-19 ◽  
Author(s):  
Nor Aiman Sukindar ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
B.T. Hang Tuah bin Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Fused Deposition Modeling (FDM) or also known as RepRap (Replicating Rapid Prototyper) is a technology that is synonym with 3D printing. This technology has entered a new era with an increasing demand among the community. It has grown commercially in the market of open-source system and it is relatively low cost. Many efforts have been put towards the development of the system in both hardware and software to increase the quality and the performance. The research highlights the development of a new nozzle to evaluate the performance on dimensional accuracy in comparison to the original nozzle. The nozzle emphasizes the die angle for the polylactic acid (PLA) material, the liquefier design which provide constant heat in the liquefier chamber, as well as insulator for the liquefier using highly insulated material. The dimensional accuracies of both nozzles were compared where the result showed that the new nozzle provided better accuracy and stability on the extruding PLA material.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 523 ◽  
Author(s):  
Wei Goh ◽  
Michinao Hashimoto

Fused deposition modeling (FDM) has become an indispensable tool for 3D printing of molds used for sacrificial molding to fabricate microfluidic devices. The freedom of design of a mold is, however, restricted to the capabilities of the 3D printer and associated materials. Although FDM has been used to create a sacrificial mold made with polyvinyl alcohol (PVA) to produce 3D microchannels, microchannels with free-hanging geometries are still difficult to achieve. Herein, dual sacrificial molding was devised to fabricate microchannels with overhang or helical features in PDMS using two complementary materials. The method uses an FDM 3D printer equipped with two extruders and filaments made of high- impact polystyrene (HIPS) and PVA. HIPS was initially removed in limonene to reveal the PVA mold harboring the design of microchannels. The PVA mold was embedded in PDMS and subsequently removed in water to create microchannels with 3D geometries such as dual helices and multilayer pyramidal networks. The complementary pairing of the HIPS and PVA filaments during printing facilitated the support of suspended features of the PVA mold. The PVA mold was robust and retained the original design after the exposure to limonene. The resilience of the technique demonstrated here allows us to create microchannels with geometries not attainable with sacrificial molding with a mold printed with a single material.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seung-Han Yang ◽  
Kwang-Il Lee

Purpose The purpose of this study is to improve the accuracy of a fused deposition modeling three-dimensional (3D) printer by identifying and compensating for position-independent geometric errors using a face-diagonal length test featuring a designed artifact and a Vernier caliper. Design/methodology/approach An artifact that does not require support when printing was designed and printed to allow performance of the face-diagonal length test. A Vernier caliper was used to measure the lengths of diagonals in the XY, YZ and ZX planes of the printed artifact specimen; this completed the face-diagonal length test. The relationships between position-independent geometric errors of the linear axes X, Y and Z and the measured diagonal lengths of the three planes were determined to identify geometric errors. Findings The approach was applied to a commercial fused deposition modeling 3D printer, and three position-independent geometric errors were rapidly identified. The artifact was re-printed after model-based compensation for these errors and the diagonal lengths were re-measured. The results were verified via coordinate measuring machine measurement of a simple test piece without and with model-based compensation for identified geometric errors. Furthermore, the proposed approach was applied to a commercial 3D printer. Research limitations/implications The measured diagonal lengths of the printed artifacts varied greatly. Thus, further studies should investigate the effects of printing materials and parameters on the length discrepancies of 3D printed artifacts. Practical implications A software-based compensation of identified position-independent geometric errors has to be used at commercial 3D printers for accuracy improvements of printed parts. Originality/value Thus, the approach is of practical utility; it can be periodically used to identify position-independent geometric errors and ensure that the 3D printer is consistently accurate.


2019 ◽  
Vol 25 (1) ◽  
pp. 82-87
Author(s):  
Wenqiong Su ◽  
Yulong Li ◽  
Lulu Zhang ◽  
Jiahui Sun ◽  
Shuopeng Liu ◽  
...  

Typography-like templates for polydimethylsiloxane (PDMS) microfluidic chips using a fused deposition modeling (FDM) three-dimensional (3D) printer are presented. This rapid and fast proposed scheme did not require complicated photolithographic fabrication facilities and could deliver resolutions of ~100 μm. Polylactic acid (PLA) was adopted as the material to generate the 3D-printed units, which were then carefully assembled on a glass substrate using a heat-melt-curd strategy. This craft of bonding offers a cost-effective way to design and modify the templates of microfluidic channels, thus reducing the processing time of microfluidic chips. Finally, a flexible microfluidic chip to be employed for cell-based drug screening was developed based on the modularized 3D-printed templates. The lithography-free, typography-like, 3D-printed templates create a modularized fabrication process and promote the prevalence of integrated microfluidic systems with minimal requirements and improved efficiency.


Author(s):  
Anggit Prakasa ◽  
Setya Permana Sutisna ◽  
Anton Royanto Ahmad

<p>The 3D printers process is applied to create prototype components, but at the last 3D Printers are often applied as last products. So, high accuracy is required in this case. In this research will find the optimal<br />setting of the dimensional accuracy 3D printers based fused deposition modeling. The method used is<br />the Taguchi method, the reason for using this method its efficiency, this is because the Orthogonal<br />Array matrix requires less number of experiments than the classical experimental design. Analysis of<br />Variance is also needed in this method to see the factors that significantly influence the response<br />variable. The results of this study indicate that the factors that significantly influence is printspeed by<br />contributing 53.08%, flowrate contributes 16.4%, and temperature heater block contributes 3.85% and<br />optimal setting is temperature heater block 190º, print speed 60mm/s and flowrate 6.28 mm3/s. (A1,<br />C3 dan D2).</p>


Author(s):  
Budi Hadisujoto ◽  
Robby Wijaya

Additive manufacturing process known as the 3D printing process is an advanced manufacturing process including one of the components to support industrial revolution 4.0. The initial development of a 3D printing machine at Sampoerna University is the background of this research. The 3D printing setup of Fused Deposition Modeling (FDM) was built using H-bot moving mechanism by considering the rigidity aspect. The FDM printing method is selected due to its cost and reliability. In this early development, the brackets were custom made using a 3D printer with Polylactic Acid (PLA) material. The result showed that the software worked properly in accordance with the assembled mechanical and electrical parts. The 3D printer could print simple objects such as planes and cubes with small dimensions. However, the printing specimen still lacked accuracy caused by the less rigidity of linear rail brackets, less coplanar belt arrangement, and error in some electronic components.


Sign in / Sign up

Export Citation Format

Share Document