scholarly journals Non-linear Dynamics in Accelerators

Author(s):  
Werner Herr ◽  
Etienne Forest

AbstractNon-linear effects in accelerator physics are important both during the design stage and for successful operation of accelerators. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. Given the scope of this handbook, the treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular to demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings.

2019 ◽  
Vol 201 ◽  
pp. 07001
Author(s):  
Vladimir Kurbatov ◽  
Victoria Tokareva ◽  
Dmitry Tsirkov

Kinematic filtting is one of the popular particle physics problems where constraint minimization is used. The constraints setting additional relations between parameters p can be given in form of equations φ(p1,..., pn) = 0. Often these equations are non-linear and complicated, and thus it is impossible or impractical to eliminate redundant parameters directly. The article covers employing of the minimization approach called a method of elimination of differentials, that is being developed at JINR as an extension to the FUMILI minimizer, and is intended for kinematic filtting in particle physics experiments.


2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


Author(s):  
Ray Huffaker ◽  
Marco Bittelli ◽  
Rodolfo Rosa

In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjects of science, such as mathematical topology, relativity or particle physics. For this reason, the tools of NLTS have been confined and utilized mostly in the fields of mathematics and physics. However, many natural phenomena investigated I many fields have been revealing deterministic non linear structures. In this book we aim at presenting the theory and the empirical of NLTS to a broader audience, to make this very powerful area of science available to many scientific areas. This book targets students and professionals in physics, engineering, biology, agriculture, economy and social sciences as a textbook in Nonlinear Time Series Analysis (NLTS) using the R computer language.


2003 ◽  
Vol 155 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Tarcı́sio M. Rocha Filho ◽  
Iram M. Gléria ◽  
Annibal Figueiredo

1977 ◽  
Vol 140 (3) ◽  
pp. 549-552 ◽  
Author(s):  
E.D. Platner ◽  
A. Etkin ◽  
K.J. Foley ◽  
J.H. Goldman ◽  
W.A. Love ◽  
...  

2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


Sign in / Sign up

Export Citation Format

Share Document