Rule Generation of Cataract Patient Data Using Random Forest Algorithm

Author(s):  
Mamta Santosh Nair ◽  
Umesh Kumar Pandey
Author(s):  
Cheng Xu ◽  
Jing Wang ◽  
TianLong Zheng ◽  
Yue Cao ◽  
Fan Ye

IntroductionIt’s very necessary to predict the survival status of patients based on their prognosis. This can assist physicians in evaluating treatment decisions. Random Forest is an excellent machine learning algorithm even without any modification. We propose a new Random Forest weighting method and apply it to the gastric cancer patient data from the Surveillance, Epidemiology, and End Results (SEER) program, and then evaluated the generalization ability of this weighted Random Forest algorithm on 10 public medical datasets. Furthermore, for the same weighting mode, the difference between using out-of-bag (OOB) data and all training sets as the weighting basis is explored.Material and methods110697 cases of gastric cancer patients diagnosed between 1975 and 2016 obtained from the SEER database were contained in the experiment. In addition, 10 public medical datasets are used for the generalization ability evaluation of this weighted Random Forest algorithm.ResultsThrough experimental verification, on the SEER gastric cancer patient data, the weighted Random Forest algorithm improves the accuracy by 0.79% compared with the original Random Forest. In AUC, Macro-averaging increased by 2.32% and Micro-averaging increased by 0.51% on average. Among the 10 public datasets, the Random Forest weighted in accuracy has the best performance on 6 datasets, with an average increase of 1.44% in accuracy and an average increase of 1.2% in AUC.ConclusionsCompared with the original Random Forest, the weighted Random Forest model has a significant improvement in performance, and the effect of using all training data as the weighting basis is better than using OOB data.


Author(s):  
A.E. Semenov

The method of pedestrian navigation in the cities illustrated by the example of Saint-Petersburg was investigated. The factors influencing people when they choose a route for their walk were determined. Based on acquired factors corresponding data was collected and used to develop model determining attractiveness of a street in the city using Random Forest algorithm. The results obtained shows that routes provided by the method are 14% more attractive and just 6% longer compared with the shortest ones.


2020 ◽  
Vol 15 (S359) ◽  
pp. 40-41
Author(s):  
L. M. Izuti Nakazono ◽  
C. Mendes de Oliveira ◽  
N. S. T. Hirata ◽  
S. Jeram ◽  
A. Gonzalez ◽  
...  

AbstractWe present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.


2021 ◽  
Vol 252 ◽  
pp. 106906
Author(s):  
Guomin Shao ◽  
Wenting Han ◽  
Huihui Zhang ◽  
Shouyang Liu ◽  
Yi Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia Kapsiani ◽  
Brendan J. Howlin

AbstractAgeing is a major risk factor for many conditions including cancer, cardiovascular and neurodegenerative diseases. Pharmaceutical interventions that slow down ageing and delay the onset of age-related diseases are a growing research area. The aim of this study was to build a machine learning model based on the data of the DrugAge database to predict whether a chemical compound will extend the lifespan of Caenorhabditis elegans. Five predictive models were built using the random forest algorithm with molecular fingerprints and/or molecular descriptors as features. The best performing classifier, built using molecular descriptors, achieved an area under the curve score (AUC) of 0.815 for classifying the compounds in the test set. The features of the model were ranked using the Gini importance measure of the random forest algorithm. The top 30 features included descriptors related to atom and bond counts, topological and partial charge properties. The model was applied to predict the class of compounds in an external database, consisting of 1738 small-molecules. The chemical compounds of the screening database with a predictive probability of ≥ 0.80 for increasing the lifespan of Caenorhabditis elegans were broadly separated into (1) flavonoids, (2) fatty acids and conjugates, and (3) organooxygen compounds.


Sign in / Sign up

Export Citation Format

Share Document