An Improved Approach to Evaluation of the Efficiency of Energy Saving Measures Based on the Indicator of Products Total Energy Intensity

Author(s):  
Olena Maliarenko ◽  
Vitalii Horskyi ◽  
Valentyna Stanytsina ◽  
Olga Bogoslavska ◽  
Heorhii Kuts
Author(s):  
José A. Camacho ◽  
Lucas da Silva Almeida ◽  
Mercedes Rodríguez ◽  
Jesús Molina

AbstractIn order to adequately assess energy policies and set clear objectives, a key preliminary step is to know the energy use patterns of the different countries. This paper estimates the evolution of the total energy use over the period 1995–2015 in four European Union (EU) countries, the Czech Republic, Hungary, Italy, and Spain, representative of two different energy patterns, the “Southern” one and the “Eastern” one. For doing so, we employ a Multi-Regional Input Output (MRIO) model. In difference with previous studies, in addition to differentiate between domestic and foreign use we distinguish whether this energy is produced domestically or abroad. The results obtained show a certain convergence in energy intensity across the four countries examined because of the radical transformations experienced by the Czech Republic and Hungary. Nonetheless, energy intensities are still substantially higher in Eastern than in Southern countries which confirms that the first group of countries have still a long road to go, especially regarding the incentives that their industries have to use energy efficiently. Taking our decomposition of total energy use, the reductions in total energy use were mainly caused by a high decrease in the importance of the domestic use of energy produced domestically. At the same time, a growing importance of the role played by the energy produced abroad was observed. These trends confirm the great importance of global value chains and the steady internalization of energy use. This methodology could be further applied to other countries.


2022 ◽  
Vol 21 (1) ◽  
pp. 1-24
Author(s):  
Sheel Sindhu Manohar ◽  
Sparsh Mittal ◽  
Hemangee K. Kapoor

In the deep sub-micron region, “spin-transfer torque RAM” (STT-RAM ) suffers from “read-disturbance error” (RDE) , whereby a read operation disturbs the stored data. Mitigation of RDE requires restore operations, which imposes latency and energy penalties. Hence, RDE presents a crucial threat to the scaling of STT-RAM. In this paper, we offer three techniques to reduce the restore overhead. First, we avoid the restore operations for those reads, where the block will get updated at a higher level cache in the near future. Second, we identify read-intensive blocks using a lightweight mechanism and then migrate these blocks to a small SRAM buffer. On a future read to these blocks, the restore operation is avoided. Third, for data blocks having zero value, a write operation is avoided, and only a flag is set. Based on this flag, both read and restore operations to this block are avoided. We combine these three techniques to design our final policy, named CORIDOR. Compared to a baseline policy, which performs restore operation after each read, CORIDOR achieves a 31.6% reduction in total energy and brings the relative CPI (cycle-per-instruction) to 0.64×. By contrast, an ideal RDE-free STT-RAM saves 42.7% energy and brings the relative CPI to 0.62×. Thus, our CORIDOR policy achieves nearly the same performance as an ideal RDE-free STT-RAM cache. Also, it reaches three-fourths of the energy-saving achieved by the ideal RDE-free cache. We also compare CORIDOR with four previous techniques and show that CORIDOR provides higher restore energy savings than these techniques.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4734 ◽  
Author(s):  
Jing Zhao ◽  
Yahui Du

An educational building is a kind of public building with a high density of occupants and high energy consumption. Energy-saving technology utilization is an effective measure to achieve high-performance buildings. However, numerous studies are greatly limited to practical application due to their strong regional pertinence and technical simplicity. This paper aims to further optimize various commonly used technologies on the basis of the current national standards, and to individually establish four recommended technology selection systems corresponding to four major climatic regions for realizing nearly zero energy educational buildings (nZEEBs) in China. An educational building was selected as the case study. An evaluation index of energy-saving contribution rate (ECR) was proposed for measuring the energy efficiency of each technology. Thereafter, high energy efficiency technologies were selected and implemented together in the four basic cases representing different climatic regions. The results showed that the total energy-saving rate in severe cold regions increased by 70.74% compared with current national standards, and about 60% of the total energy-saving rate can be improved in cold regions. However, to realize nZEEBs in hot summer and cold winter regions as well as in hot summer and warm winter regions, photovoltaic (PV) technology needs to be further supplemented.


2012 ◽  
Vol 164 ◽  
pp. 93-96 ◽  
Author(s):  
Chang Guo ◽  
Jian Yao

This paper analyzed the effect of same insulation materials on energy-saving potential of three different buildings by using the energy simulation program DOE-2. The results show that the heating energy saving rate of the building decreases when the building shape coefficient increases, while cooling energy saving rate of the building rises and the total energy saving rate of the buildings will reduce.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Salah M Alabani

This paper studies the manner of energy consumption in Libyan street lighting systems and general road section. It also suggests proposal system with two cases of operation for an attempt to apply the energy saving program by adopting an optimum method in order to decrease the demand of energy in this section and to reduce the use of uneconomic equipment.The proposal system in this paper introduces the Light Emitting Diode (LED) street lighting technology to be used instead of traditional luminaries High Pressure Sodium (HPS). The proposed system is divided into two cases. The first case discusses the replacement of traditional luminaries (HPS) with energy saving luminaries (LED), while second case explains how integrating control node (dynamic dimmer) into LED in order to dim output lighting in streets will save more energy.This study reaches a result that a significant amount of energy of %47 (about 1092.23 GWh/year) of total energy consumed in street lighting sector could be saved if first case is applied. Moreover, it suggests that more energy of %58 (about 1380.02 GWh/year) of total energy consumed in the same sector cloud be saved if the second case is adopted.


2019 ◽  
Vol 294 ◽  
pp. 01001 ◽  
Author(s):  
Serhii Arpul ◽  
Viktor Artemchuk ◽  
Mykola Babyak ◽  
Viacheslav Vasilyev ◽  
Hennadii Hetman ◽  
...  

The paper considers the issues of reducing the energy intensity of transportation at opencast mining enterprises, the relevance of which has now increased due to the rise in the cost of fuel and energy resources. It presents the study results concerning the cost structure of the electricity consumed by electric mine transport, which form the basis for the development of technical and operational measures to reduce the energy intensity of the transportation process. It is shown that the work to reduce the electricity consumption for mined rock transportation should be aimed at: Reduction of losses in the power circuits of the traction rolling stock due to the use of more advanced electric rolling stock and regulation of the degree of utilization of the installed traction power; Introduction of new contact materials for electrical circuits with the lowest possible resistivity, including for current collector plates; Introduction of measures to reduce energy consumption for power supply of auxiliary circuits; Development and implementation of rational train control techniques. The introduction of energy-saving measures should include the development and application of effective methods for calculating individual norms of energy consumption and incentives for energy saving of the employees involved in the organization of the transportation process.


2019 ◽  
Vol 118 ◽  
pp. 01020
Author(s):  
Qing Ding ◽  
Haihong Chen ◽  
Pengcheng Li ◽  
Meng Liu ◽  
Ling Lin

The significance of the principles and methods for building the standard system for “double control” was analyzed. A framework of standard system for “double control” was preliminarily built, comprising three subsystems of fundamental common, total energy consumption control and energy intensity control. The features and shortcomings of standards for “double control” was analyzed, as a reference for the continuous improvement of the standard system for “double control”, as well as the research and preparation of key standards in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Wenxin Li ◽  
Qiyuan Peng ◽  
Chao Wen ◽  
Shengdong Li ◽  
Xu Yan ◽  
...  

Optimizing to increase the utilization ratio of regenerative braking energy reduces energy consumption, and can be done without increasing the deviation of train running time in one circle. The latter entails that the train timetable is upheld, which guarantees that the demand for passenger transport services is met and the quality of services in the urban rail transit system is maintained. This study proposes a multi-objective optimization model for urban railways with timetable optimization to minimize the total energy consumption of trains while maximizing the quality of service. To this end, we apply the principles and ideas of calculus to reduce the power of the velocity in the train energy consumption model. This greatly simplifies the complexity of the optimization model. Then, considering the conflicting requirements of decision-makers, weight factors are added to the objective functions to reflect decision-makers’ preferences for energy-saving and the quality of service. We adopt the nondominated sorting genetic algorithm-II (NSGA-II) to solve the proposed model. A practical case study of the Yizhuang urban railway line in Beijing is conducted to verify the effectiveness of the proposed model and evaluate the advantages of the optimal energy saving timetable (OEST) in comparison to the optimal quality of service timetable (OQOST). The results showed that the OEST reduced total energy consumption by 8.72% but increased the deviation of trains running time in one circle by 728 s. The total energy consumption was reduced by 6.09%, but there was no increase in the deviation of train running time in one circle with the OQOST.


Sign in / Sign up

Export Citation Format

Share Document