CORIDOR: Using CO herence and Tempo R al Local I ty to Mitigate Read D isurbance Err OR in STT-RAM Caches

2022 ◽  
Vol 21 (1) ◽  
pp. 1-24
Author(s):  
Sheel Sindhu Manohar ◽  
Sparsh Mittal ◽  
Hemangee K. Kapoor

In the deep sub-micron region, “spin-transfer torque RAM” (STT-RAM ) suffers from “read-disturbance error” (RDE) , whereby a read operation disturbs the stored data. Mitigation of RDE requires restore operations, which imposes latency and energy penalties. Hence, RDE presents a crucial threat to the scaling of STT-RAM. In this paper, we offer three techniques to reduce the restore overhead. First, we avoid the restore operations for those reads, where the block will get updated at a higher level cache in the near future. Second, we identify read-intensive blocks using a lightweight mechanism and then migrate these blocks to a small SRAM buffer. On a future read to these blocks, the restore operation is avoided. Third, for data blocks having zero value, a write operation is avoided, and only a flag is set. Based on this flag, both read and restore operations to this block are avoided. We combine these three techniques to design our final policy, named CORIDOR. Compared to a baseline policy, which performs restore operation after each read, CORIDOR achieves a 31.6% reduction in total energy and brings the relative CPI (cycle-per-instruction) to 0.64×. By contrast, an ideal RDE-free STT-RAM saves 42.7% energy and brings the relative CPI to 0.62×. Thus, our CORIDOR policy achieves nearly the same performance as an ideal RDE-free STT-RAM cache. Also, it reaches three-fourths of the energy-saving achieved by the ideal RDE-free cache. We also compare CORIDOR with four previous techniques and show that CORIDOR provides higher restore energy savings than these techniques.

SPIN ◽  
2019 ◽  
Vol 09 (03) ◽  
pp. 1950009 ◽  
Author(s):  
Rongzhi Zhao ◽  
Wenchao Chen ◽  
Chenglong Hu ◽  
Luyang Chen ◽  
Jian Zhang ◽  
...  

Understanding the dynamic behavior of an isolated skyrmion with external perturbations has been obstructed due to the difficulty in experimentally observing such an instantaneous phenomenon within picoseconds. Herein, we theoretically investigated the spin-transfer-torque-induced dynamics of an isolated skyrmion excited by external nanosecond-pulse perturbations. It is found that a redshift of the resonant frequency appears under a pulse polarized current with [Formula: see text][Formula: see text]A/m2 and [Formula: see text][Formula: see text]GHz, while a blueshift is presented under a combined perturbation of the pulse polarized current and an out-of-plane ac magnetic field. The physic origins of the redshift and the blueshift are ascribed to the increased average energy of system from [Formula: see text][Formula: see text]J to [Formula: see text][Formula: see text]J and integer multiple (twofold and fourfold) oscillation frequencies of total energy, respectively. The present study could thus provide an insight to the micromagnetic dynamics of skyrmion under the magnetoelectric couplings.


2017 ◽  
Vol 42 (2) ◽  
pp. 82-88
Author(s):  
Jian Yao ◽  
Rong-Yue Zheng

This study investigated the building energy, glare and daylight performance of overhang using building simulation software Energyplus in order to identify an optimal depth in hot summer and cold winter zone. A typical building with different window-to-wall ratios (WWR) was modeled and different overhang depths were considered. Results showed that the optimal overhang depths are 0.9m (WWR=0.15), 1.16m (WWR=0.3) and 1.62m (WWR=0.57), respectively. The total energy savings from overhang design can be ranging from about 3% to 24% depending on WWR and overhang depth. Moreover, the regression relationship between optimal overhang depth and WWR is given to help identify the best overhang dimension at the design stage. The potential energy saving performance for different WWRs then can be roughly inferred according to a total energy saving chart without building energy simulation. In conclusion, to be applicable in buildings, an overhang depth of 0.6-0.8m is suitable in this region since it has a balance in energy performance and aesthetic appearance.


2017 ◽  
Vol 18 (2) ◽  
pp. 133
Author(s):  
Lutfi Rohman ◽  
L. Musyarofah ◽  
Endhah Purwandari

STT (Spin Transfer Torque) can be referred to as a process of manipulation and control of spin current in the field of spintronics. When the material is ferromagnetic nanowire La0.7Sr0.3MnO3injected currents will move the domain wall with accompanying changes of spin currents. In mikromagnetik simulation shows that the application is capable of producing flow velocity or pressure of domain wall in the direction of electron flow. The domain wall pressure generating magnetization changes with increasing current density occurs. To that end, the simulation research was done in order to obtain the effect of the injection of electric current to the magnetization of the material. This phenomenon is simulated by modeling the material into the 3D geometry. The greater the current density is given the domain wall velocity or pressure on the nanowire faster so that the magnetization process is also faster. Changes in the velocity of the fastest domain wall is obtained when the material is injected with a current density as well as M-t get a graph showing oscillation pattern that is denser when the current is increased. Furthermore, the total energy analysis with variations in size diameter of 10 nm, 20 nm and 30 nm. The results show that with increasing diameter, total energy tends to increase. Keywords: spin transfer torque, La0.7Sr0.3MnO3, magnetisation, domain wall, ferromagnetic


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1756
Author(s):  
Esteban Garzón ◽  
Marco Lanuzza ◽  
Ramiro Taco ◽  
Sebastiano Strangio

Spin-transfer torque magnetic tunnel junction (STT-MTJ) based on double-barrier magnetic tunnel junction (DMTJ) has shown promising characteristics to define low-power non-volatile memories. This, along with the combination of tunnel FET (TFET) technology, could enable the design of ultralow-power/ultralow-energy STT magnetic RAMs (STT-MRAMs) for future Internet of Things (IoT) applications. This paper presents the comparison between FinFET- and TFET-based STT-MRAM bitcells operating at ultralow voltages. Our study is performed at the bitcell level by considering a DMTJ with two reference layers and exploiting either FinFET or TFET devices as cell selectors. Although ultralow-voltage operation occurs at the expense of reduced reading voltage sensing margins, simulations results show that TFET-based solutions are more resilient to process variations and can operate at ultralow voltages (<0.5 V), while showing energy savings of 50% and faster write switching of 60%.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Author(s):  
T. Kimura

This chapter discusses the spin-transfer effect, which is described as the transfer of the spin angular momentum between the conduction electrons and the magnetization of the ferromagnet that occurs due to the conservation of the spin angular momentum. L. Berger, who introduced the concept in 1984, considered the exchange interaction between the conduction electron and the localized magnetic moment, and predicted that a magnetic domain wall can be moved by flowing the spin current. The spin-transfer effect was brought into the limelight by the progress in microfabrication techniques and the discovery of the giant magnetoresistance effect in magnetic multilayers. Berger, at the same time, separately studied the spin-transfer torque in a system similar to Slonczewski’s magnetic multilayered system and predicted spontaneous magnetization precession.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1229
Author(s):  
Andrii Vovk ◽  
Sergey A. Bunyaev ◽  
Pavel Štrichovanec ◽  
Nikolay R. Vovk ◽  
Bogdan Postolnyi ◽  
...  

Thin polycrystalline Co2FeGe films with composition close to stoichiometry have been fabricated using magnetron co-sputtering technique. Effects of substrate temperature (TS) and post-deposition annealing (Ta) on structure, static and dynamic magnetic properties were systematically studied. It is shown that elevated TS (Ta) promote formation of ordered L21 crystal structure. Variation of TS (Ta) allow modification of magnetic properties in a broad range. Saturation magnetization ~920 emu/cm3 and low magnetization damping parameter α ~ 0.004 were achieved for TS = 573 K. This in combination with soft ferromagnetic properties (coercivity below 6 Oe) makes the films attractive candidates for spin-transfer torque and magnonic devices.


Sign in / Sign up

Export Citation Format

Share Document