Building Derived Materials—Sand Mixture as a Backfill Material

Author(s):  
M. Jayatheja ◽  
Anasua Guharay ◽  
Arkamitra Kar ◽  
Ashok Kumar Suluguru
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Beenish Jehan Khan ◽  
Irshad Ahmad ◽  
Hassan Nasir ◽  
Abdullah Abdullah ◽  
Qazi Khawar Gohar

The use of scrap tires in various engineering applications has been extensively explored. The present study has the following aim: to evaluate the suitability of tire-sand mixtures as backfill material based on its shear strength. To achieve this objective, modified Proctor compaction tests were performed on tire shred-sand mixture with mixing proportions by weight of tire shreds and sand (0/100, 20/80, 30/70, and 40/60) using different sizes of tire shreds (50 mm, 75 mm, and 100 mm). Based on the results of the modified Proctor compaction test, the two mixing proportions, i.e., tire shred/sand, 20/80 and 30/70, respectively, were selected. Large-scale direct shear test indicated higher internal friction angle and cohesion values for tire shred-sand mixtures (30/70) with 100 mm tire size (38.5° and 19 kPa) as compared with sand-only backfill material (30.9° and 0 kPa). Based on stress-strain behavior plots, it was indicated that the inclusion of tire shreds imparts ductility to backfill mixtures. To achieve the second objective, the pull-out tests were performed with deformed steel bars of two different diameters (12.7 mm and 15.8 mm) embedded in various backfill mixtures prepared with tire shreds of three different sizes (50, 75, and 100 mm). The pull-out test result indicated that the deformed steel bars exhibit higher pull-out resistance in tire shred-sand mixtures (9.9 kN/m) compared with sand-only backfill material (4.1 kN/m).


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 717
Author(s):  
Andrzej Głuchowski ◽  
Raimondas Šadzevičius ◽  
Rytis Skominas ◽  
Wojciech Sas

Buried pipe design requires knowledge about the fill to design the backfill structure. The interaction between the backfill envelope and the pipe impacts the structural performance of the buried pipe. The backfill material and compaction level respond to the backfill’s overall strength and, therefore, for pipe-soil interaction. The strength of backfill material is described in terms of modulus of soil reaction E’ and constrained modulus Eode. As the E’ is an empirical parameter, the Eode can be measured in the laboratory by performing the oedometer tests. In this study, we have performed extensive oedometric tests on five types of anthropogenic materials (AM). Three of them are construction and demolition materials (C–D materials) namely, recycled concrete aggregate (RCA), crushed brick (CB), and recycled asphalt pavement (RAP). Two of them are industrial solid wastes (ISW) namely, fly ash and bottom slag mix (FA + BS) and blast furnace slag (BFS). The results of the tests revealed that AM behaves differently from natural aggregates (NA). In general, the Eode value for AM is lower than for NA with the same gradation. Despite that, some of AM may be used as NA substitute directly (RCA or BFS), some with special treatment like CB and some with extra compaction efforts like RAP or FA + BS.


2009 ◽  
Vol 149 (1-3) ◽  
pp. 143-152 ◽  
Author(s):  
R.O. Abdel Rahman ◽  
H.A. Ibrahim ◽  
N.M. Abdel Monem

Author(s):  
Hooman Hoornahad ◽  
Eduard A. B. Koenders

In this paper, the effect of the mix composition on rheological behavior of fresh cement-sand mixture is studied by considering a mixture as a two-phase model that is decomposed into a granular and a paste phase. The paste itself is subdivided into void paste and excess paste. Void paste fills the void space between the grains when they are in a fully compacted state while excess paste will use the remaining paste to form a paste layer around each individual grain particle, with equal thickness. By considering each grain particle covered with the excess paste layer as a single element, the rheological behavior of cement-sand mixtures can be related to their inter-element interactions for all sets of particle combinations.


2012 ◽  
Vol 76 (8) ◽  
pp. 3401-3410 ◽  
Author(s):  
M. Felipe-Sotelo ◽  
J. Hinchliff ◽  
N. Evans ◽  
P. Warwick ◽  
D. Read

AbstractThe sorption behaviour of I−, Cs+, Ni2+, Eu3+, Th4+ and UO2+2on NRVB (Nirex reference vault backfill) a possible vault backfill, at pH 12.8 was studied. Sorption isotherms generated were compared to results obtained in the presence of cellulose degradation products (CDP). Whereas Cs was not affected by the presence of the organic compounds, a notable reduction in the sorption of Th and Eu to cement was observed. The results also indicated limited removal of Ni from solution (with or without an organic ligand) by sorption, the concentration in solution seemingly being determined solely by solubility processes. In the case of uranium, the presence of CDP increased the sorption to cement by almost one order of magnitude. Further studies into the uptake of CDP by cement are being undertaken to identify the mechanism(s) responsible.


Author(s):  
Volodymyr Bondarenko ◽  
◽  
Oleksandr Filonenko ◽  
Mykhailo Petlovanyi ◽  
Vladyslav Ruskykh ◽  
...  

Purpose. Experimental studies of the interaction of blast-furnace and steel-making slags with open pit waters during their direct contact and assessment of the volume of filling of the formed man-made cavities during mining of mineral deposits. Methods. Based on the analysis, the current low level of metallurgical slag and the lack of real and effective directions of their large-scale utilization were determined. The laboratory studies of the interaction of metallurgical slags with open pit water at a certain time of interaction, generally accepted methods for studying the chemical composition and concentration of substances in water, computer-aided design software packages and drawings to determine the volumes of the open pit mined-out area were used. Results. The dynamics of changes in the products of interactions of steel-smelting slags with open-pit waters at a certain ratio and period of interaction was investigated. It was found that the concentration of pollutants upon contact of water with steel-making slag changes according to polynomial dependences on the time of their interaction, decreasing by the 30th day, which eliminates the danger for the aquifer. The safest type of metallurgical slag was recommended for the formation of the bottom layer of the backfill massif. The volumes of the mined-out area of the open pit were determined in detail to assess the volumes of placement of the backfill material based on metallurgical slags. Scientific novelty. The safety of the contact of backfill materials based on steelmaking slags with open pit water was scientifically proven, which is confirmed by the established polynomial patterns of changes in concentrations and pollutants from the ratio and time of interaction. Practical significance. The formation of the backfill massif on the basis of blast-furnace dump and steel-smelting slags will allow achieving an environmental effect, such as their safe disposal as a reclamation of technologically disturbed lands by mining and restoration of the economic value of the land plot, as well as preventing the formation of new dumps.


Sign in / Sign up

Export Citation Format

Share Document