Composability Challenges for Effective Cyber Physical Systems Applications in the Domain of Cloud, Edge, and Fog Computing

Author(s):  
Andreas Tolk
2020 ◽  
Vol 5 ◽  
pp. 182-187
Author(s):  
S.A. Potryasaev ◽  
◽  
I.Yu. Pimanov

The paper proposes a methodological approach and software for managing information processes in systems for modeling natural objects on the example of a system for operational forecasting of fl oods. The proposed approach is based on application of cyber-physical systems, the industrial Internet and fog computing concepts. The results of testing the technologies for managing information processes demonstrate increasing both reliability of modeling and effi ciency of using the fl ood forecasting system computing resources.


2017 ◽  
Vol 29 (4) ◽  
pp. e3184 ◽  
Author(s):  
M.S. de Brito ◽  
S. Hoque ◽  
R. Steinke ◽  
A. Willner ◽  
T. Magedanz

Author(s):  
Qinglin Qi ◽  
Dongming Zhao ◽  
T. Warren Liao ◽  
Fei Tao

Nowadays, smart manufacturing has attracted more and more interesting and attentions of researchers. As an important prerequisite for smart manufacturing, the cyber-physical integration of manufacturing is becoming more and more important. Cyber-physical systems (CPS) and digital twin (DT) are the preferred means to achieve the interoperability and integration between the physical and cyber worlds. From the perspective of hierarchy, CPS and DT can be divided into unit level, system level, and SoS (system of system) level. To meet the different requirements of each level, the following three complementary technologies, i.e., edge computing, fog computing and cloud computing, are instrumental to accelerate the development of various CPS and DT. In this article, the perspectives of unit-level, system-level, and SoS-level of CPS and DT supported by edge computing, fog computing and cloud computing are discussed.


Computers ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 101
Author(s):  
Alexander Vodyaho ◽  
Nataly Zhukova ◽  
Igor Kulikov ◽  
Saddam Abbas

The article deals with the use of context-sensitive policies in the building of data acquisition systems in large scale distributed cyber-physical systems built on fog computing platforms. It is pointed out that the distinctive features of modern cyber-physical systems are their high complexity and constantly changing structure and behavior, which complicates the data acquisition procedure. To solve this problem, it is proposed to use an approach according to which the data acquisition procedure is divided into two phases: model construction and data acquisition, which allows parallel realization of these procedures. A distinctive feature of the developed approach is that the models are built in runtime automatically. As a top-level model, a multi-level relative finite state operational automaton is used. The automaton state is described using a multi-level structural-behavioral model, which is a superposition of four graphs: the workflow graph, the data flow graph, the request flow graph and the resource graph. To implement the data acquisition procedure using the model, the context-sensitive policy mechanism is used. The article discusses possible approaches to implementation of suggested mechanisms and describes an example of application.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Sign in / Sign up

Export Citation Format

Share Document