scholarly journals Regulated Early Closures of Coal-Fired Power Plants and Tougher Energy Taxation on Electricity Production: Synergy or Rivalry?

Author(s):  
Alfredo Marvão Pereira ◽  
Rui Manuel Pereira
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Aleksandra Kanevče ◽  
Igor Tomovski ◽  
Ljubčo Kocarev

In this paper we analyze the impact of the renewable energy sources on the overall electric power system of the Republic of Macedonia. Specifically, the effect of the photovoltaic power plants is examined. For this purpose we developed an electricity production optimization model, based on standard network flow model. The renewable energy sources are included in the model of Macedonia based on hourly meteorological data. Electricity producers that exist in 2012 are included in the base scenario. Two more characteristic years are analyzed, i.e. 2015 and 2020. The electricity producers planned to be constructed in these two years (which include the renewable energy sources) are also included. The results show that the renewable energy sources introduce imbalance in the system when the minimum electricity production is higher than the electricity required by the consumers. But, in these critical situations the production from photovoltaic energy sources is zero, which means that they produce electricity during the peak load, and do not produce when the consumption is at minimum.


Author(s):  
Cedric Devriese ◽  
Gijs Penninx ◽  
Guido de Ruiter ◽  
Rob Bastiaans ◽  
Ward De Paepe

Abstract Against the background of a growing deployment of renewable electricity production, like wind and solar, the demand for energy storage will only increase. One of the most promising ways to cover the medium to long-term storage is to use the excess electricity to produce hydrogen via electrolysis. In a modern energy grid, filled with intermittent power sources and ever-increasing problems to construct large power plants in densely populated areas, a network of Decentralised Energy Systems (DES) seems more logical. Therefore, the importance of research into the design of a small to medium-sized hydrogen fuelled micro Gas Turbine (mGT) unit for efficient, local heat and electricity production becomes apparent. To be able to compete with Reciprocating Internal Combustion Engines (RICEs), the mGT needs to reach 40% electrical efficiency. To do so, there are two main challenges; the design of an ultra-low NOX hydrogen combustor and a high Turbine Inlet Temperature (TIT) radial turbine. In this paper, we report on the progress of our work towards that goal. First, an improvement of the initial single-nozzle swirler (swozzle) combustor geometry was abandoned in favour of a full CFD (steady RANS) design and optimisation of a micromix type combustion chamber, due to its advantages towards NOx-emission reduction. Second, a full CFD design and optimisation of the compressor and turbine is performed. The improved micromix combustor geometry resulted in a NOx level reduction of more than 1 order of magnitude compared to our previous swozzle design (from 1400 ppm to 250 ppm). Moreover, several design parameters, such as the position and diameter of the hydrogen injection nozzle and the Air Guiding Panel (AGP) height, have been optimized to improve the flow patterns. Next to the combustion chamber, CFD simulations of the compressor and turbine matched the 1D performance calculations and reached the desired performance goals. A CFD analysis of the impact of the tip gap and exhaust diffuser cone angle led to a choice of these parameters that improved the compressor and turbine performance with a limited loss in efficiency.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3634
Author(s):  
Daniele Lerede ◽  
Chiara Bustreo ◽  
Francesco Gracceva ◽  
Yolanda Lechón ◽  
Laura Savoldi

The European Roadmap towards the production of electricity from nuclear fusion foresees the potential availability of nuclear fusion power plants (NFPPs) in the second half of this century. The possible penetration of that technology, typically addressed by using the global energy system EUROFusion TIMES Model (ETM), will depend, among other aspects, on its costs compared to those of the other available technologies for electricity production, and on the future electricity demand. This paper focuses on the ongoing electrification process of the transport sector, with special attention devoted to road transport. A survey on the present and forthcoming technologies, as foreseen by several manufacturers and other models, and an international vehicle database are taken into account to develop the new road transport module, then implemented and harmonized inside ETM. Following three different storylines, the computed results are presented in terms of the evolution of the road transport demand in the next decades, fleet composition and CO 2 emissions. The ETM results are in line with many other studies. On one hand, they highlight, for the European road transport energy consumption pattern, the need for dramatic changes in the transport market, if the most ambitious environmental goals are to be pursued. On the other hand, the results also show that NFPP adoption on a commercial scale could be justified within the current projection of the investment costs, if the deep penetration of electricity in the road transport sector also occurs.


2018 ◽  
Vol 44 ◽  
pp. 00064
Author(s):  
Marcin Karpiński ◽  
Kajetan d’Obyrn ◽  
Ewa Kmiecik ◽  
Barbara Tomaszewska

Electricity production in Poland is carried out mainly in conventional power plants, and the necessary resources include fuel and water. Significant water intake and production of sewage necessitate the application of technological solutions limiting the negative impact on the water environment. For this reason, Tauron Group's power plants for replenishing losses in cooling circuits use beside surface water, water from inactive mining plants. Due to the increased content of chlorides and sulphates in relation to surface water, mine water show significant corrosion properties. However, they are characterized by a relatively stable chemical composition mainly dependent on the physicochemical properties of the geological environment. The surface water quality is affected by many factors, such as seasons, thaws, rainfall, or the presence of pollutants from sewage disposal. The relative stability of the chemical composition of mine water allows for easier determination of chemical dosage during treatment process. The paper presents a stability assessment of the chemical composition of waters used to supplement circuits based on data from 2007–2017.


Author(s):  
Rene Nsanzineza ◽  
Jana Milford

Across the U.S., electricity production from coal-fired generation is declining while use of renewables and natural gas is increasing. This trend is expected to continue in the future. In the Rocky Mountain region, this shift is expected to reduce emissions from electricity production while increasing emissions from the production and processing of oil and gas, with significant implications for the level, location, and timing of the air pollution emissions that are associated with these activities. In turn, these emissions changes will affect air quality in the region, with impacts on ground-level ozone of particular concern. This study aims to evaluate the tradeoffs in emissions from both power plants and oil and gas basins resulting from contrasting scenarios for shifts in electricity and oil and gas production through the year 2030. The study also incorporates federal and state-level regulations for CH4, NOx, and VOC emissions sources. These regulations are expected to produce significant emissions reductions relative to baseline projections, especially in the oil and gas production sector. Annual emissions from electricity production are estimated to decrease in all scenarios, due to a combination of using more natural gas power plants, renewables, emissions regulations, and retiring old inefficient coal power plants. However, reductions are larger in fall, winter, and spring than in summer, when ozone pollution is of greatest concern. Emissions from oil and gas production are estimated to either increase or decrease depending on the location, scenario, and the number of sources affected by regulations. The net change in emissions thus depends on pollutant, location, and time of year.


Author(s):  
Charles A. Powell ◽  
Thomas W. Johnson

With many States setting goals in the 2010–2020 timeframe for increased U.S. electricity production from renewable energy sources totaling nearly 100,000 MW nationwide, innovative solutions are required; as well as the suspension of several myths of conventional wisdom concerning renewable energy. Since Wind, Hydro and Solar are “opportunity” energy supplies not necessarily available when electricity demands are high; there is a great need for a renewable, “dispatchable” energy source that would be available anytime. Building on the experience of the Pulp and Paper Industry, waste-wood fueled IGCC units of 100MW size are practical today; and new gasification technologies being developed for power plants promise high efficiency, and competitive electricity pricing. With these new IGCC technologies, the US Department of Agriculture estimates there is more than enough wood waste to meet the renewable energy goals currently being considered, cost-competitively and environmentally responsibly.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5605 ◽  
Author(s):  
Matteo Fermeglia ◽  
Paolo Bevilacqua ◽  
Claudia Cafaro ◽  
Paolo Ceci ◽  
Antonio Fardelli

This contribution aims to provide an in-depth outlook of the phase-out of coal-fired energy generation in Italy. In particular, this article analyzes the state-of-the-art with regard to both the current role of coal generation and the performance of the main legal and regulatory tools as implemented in Italy thus far to ensure the closure of all coal power plants by 2025 as announced in the Italian National Climate and Energy Plan. Based on existing data and scenarios on both electricity production and demand trends, this article unfolds the marginal role played by coal-fired generation in the Italian energy mix. In addition, this paper aims to highlight the outstanding technical uncertainties and regulatory hurdles in the way towards de-carbonization of energy generation in Italy. This paper argues that several remarkable improvements are needed in order to avoid over-generation (especially through natural gas), to upscale the penetration of renewable energy sources, and develop the necessary infrastructures to adequately deliver on the full phasing-out of coal within the expected timeframes.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 668
Author(s):  
Wael Al-Kouz ◽  
Ahmad Almuhtady ◽  
Nidal Abu-Libdeh ◽  
Jamal Nayfeh ◽  
Alberto Boretti

This paper aims to compute the performances of a smaller version of Solana power plant, with half the solar field, and 1 of 2 turbines in the power cycle, that can be built in Amman or Ma’an in Jordan. The climate conditions for both Amman and Ma’an are discussed thoroughly in the paper. Furthermore, a preliminary validation exercise performed by using measured monthly average values of electricity production from existing plants, a system advisor model (SAM) is used to predict the performances of the proposed Solana-like plants in Ma’an and Amman. The validation shows a good agreement with the measured data for different existing power plants. The simulation results including the monthly capacity factors suggest the annual operation in Ma’an maybe even better than the operation in Gila Bend, for an annual average capacity factor of about 41% for Ma’an vs. a capacity factor of about 39% for Gila Bend. This is mainly due to the best combination of direct normal irradiance (DNI) and the dry bulb temperature across the year in Ma’an versus Gila Bend.


Sign in / Sign up

Export Citation Format

Share Document