A Simulation Model Supporting the Production Optimization for High-Precision Machines Assembly

Author(s):  
Andrea Monti ◽  
Donatella Corti ◽  
Dario Pietraroia
2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGRs as follows;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model can be used to propose the best tie-in location of future wells in addition to providing first-pass flow assurance indications throughout the field's life and under different network configurations. The model enabled the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2409-2427 ◽  
Author(s):  
Zhenyu Guo ◽  
Albert C. Reynolds

Summary We design a new and general work flow for efficient estimation of the optimal well controls for the robust production-optimization problem using support-vector regression (SVR), where the cost function is the net present value (NPV). Given a set of simulation results, an SVR model is built as a proxy to approximate a reservoir-simulation model, and then the estimated optimal controls are found by maximizing NPV using the SVR proxy as the forward model. The gradient of the SVR model can be computed analytically so the steepest-ascent algorithm can easily and efficiently be applied to maximize NPV. Then, the well-control optimization is performed using an SVR model as the forward model with a steepest-ascent algorithm. To the best of our knowledge, this is the first SVR application to the optimal well-control problem. We provide insight and information on proper training of the SVR proxy for life-cycle production optimization. In particular, we develop and implement a new iterative-sampling-refinement algorithm that is designed specifically to promote the accuracy of the SVR model for robust production optimization. One key observation that is important for reservoir optimization is that SVR produces a high-fidelity model near an optimal point, but at points far away, we only need SVR to produce reasonable approximations of the predicting output from the reservoir-simulation model. Because running an SVR model is computationally more efficient than running a full-scale reservoir-simulation model, the large computational cost spent on multiple forward-reservoir-simulation runs for robust optimization is significantly reduced by applying the proposed method. We compare the performance of the proposed method using the SVR runs with the popular stochastic simplex approximate gradient (StoSAG) and reservoir-simulations runs for three synthetic examples, including one field-scale example. We also compare the optimization performance of our proposed method with that obtained from a linear-response-surface model and multiple SVR proxies that are built for each of the geological models.


2010 ◽  
Vol 1 (MEDSI-6) ◽  
Author(s):  
C. Collette ◽  
S. Janssens ◽  
K. Artoos ◽  
C. Hauviller

This paper provides a review of active control strategies used to isolate high-precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.


1949 ◽  
Vol 160 (1) ◽  
pp. 145-153
Author(s):  
Mansergh Shaw

The problems of precision manufacture in Australia, arising chiefly from her geographic isolation, are first discussed. The paper then takes one particular problem from the field of optical manufacture and shows how it was solved for the conditions prevailing in the Dominion. The problem discussed is the production of graticules, or reticles, for range-finders, predictors, gun sights, telescopes, binoculars, microscopes, collimators, and many other such instruments. The first part of the paper deals briefly with methods used in reproducing the pattern, particularly the ruling and etching process. The second, and much the larger, part of the paper deals with the design of the high precision machines which were made for ruling the glass disks preparatory to etching the pattern into the glass. Two such machines were developed, one generating the pattern from the movements of the machine itself, the other, a pantograph, by copying the pattern from master plates. A series of self-checking tests is described by which the accuracy of the generating machine could rapidly be tested to an accuracy of much better than 0·0001 inch. A brief survey of the complete process, from glass blank to finished graticule, is made in the Appendix.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
RuXiang Gong ◽  
JingSong Li ◽  
ZiJun Huang ◽  
Fei Wang ◽  
Hao Yang ◽  
...  

Recently, a data-space inversion (DSI) method has been proposed and successfully applied for the history matching and production optimization for conventional waterflooding reservoir. Under Bayesian framework, DSI can directly and effectively obtain posterior flow predictions without inverting any geological parameters of reservoir model. In this paper, we integrate the numerical simulation model with DSI method for rapid history matching and production prediction for steam flooding reservoir. Based on the finite volume method, a numerical simulation model is established and it is used to provide production data samples for DSI by the simulation of ensemble geological models. DSI-based production prediction model is then established and get trained by the historical data through the random maximum likelihood principle. The posterior production estimation can be obtained fast by training the DSI-based model with history data, but without any posterior geological parameters. The proposed method is applied for history matching and estimating production performance prediction in some numerical examples and a field case, and the results prove its effectiveness and reliability.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 161
Author(s):  
Manuela Galati ◽  
Flaviana Calignano ◽  
Marco Viccica ◽  
Luca Iuliano

The conventional approach to design and manufacturing often has geometries with an efficient material distribution. For the high-precision machines, that approach involves the design of heavy components that guarantees the stiffness requirements. However, the higher the weight of the part, the higher inertia it has. As a result, when the feed axes are accelerated, the inertial forces deform the machine components and the precision of the machine is reduced. This study investigated the designing for additive manufacturing (DfAM) and designing for assembly (DfA) to increase the material efficiency of components for high-precision applications. A new methodology which considered the design and manufacturing issues and machining as well is given. A comprehensive model for cost evaluation of the part is presented. The case study refers to the rails and the bracket that support and move the flying probe of a testing machine for micro-electromechanical systems (MEMS). The weight of the rails has been decreased by 32% and the components to be assembled have been reduced from 16 to 7. The optimized bracket is more than 50% stiffer than the original one, 10% lighter, and economically competitive.


2019 ◽  
Vol 100 ◽  
pp. 00080
Author(s):  
Lukasz Scislo ◽  
Nina Szczepanik-Scislo

The aim of the research was to describe the effects that air and water cooling systems can have on the dynamic behaviour of precise machines. Although much thought is paid to vibration isolation of the ground and isolation of individual effects of machines operating close to each other, it is often forgotten to model or to measure the effects that the ventilation or the machines cooling systems have on the machine itself. This can be especially important for high precision machines used for experimental research and medical equipment. The article shows the effects of ventilation and cooling system on the induction of additional resonant frequencies of the system for the high precision machine like a linear collider. This kind of machine requires special environmental conditions to assure proper beam stability. Due to the dynamic behaviour of typical machines, the presence of the new high amplitude frequencies in the 0-100 Hz range is very dangerous for its stability of work. In the case of high precision machines, it is not only a cause of not optimal working conditions but very often is a cause of serious problems.


2021 ◽  
Author(s):  
Fedor Yurievich Leskin ◽  
Inna Aleksandrovna Sakhipova ◽  
Nikita Mikhailovich Zorkalt?ev ◽  
Alan Kazbekovich Dzutcev ◽  
Svetlana Rafailievna Pavlova ◽  
...  

Abstract Oil-saturated strata of Western Siberia fields are represented by laminated low-permeability sandstone separated by shale layers. Therefore, when designing hydraulic fractures, it is important to create longer propped fracture half-length and provide coverage of oil-saturated layers along the entire net height. Implementation of high-volume proppant fractures in combination with high-viscosity crosslinked fluids leads to excessive fracture height growth. In some cases it results in ineffective proppant distribution in the target layer and, moreover, to unwanted water production if the water contact or water bearing formation is close. To overcome these issues, it was proposed to use a novel hydraulic fracturing fluid that is a viscous slickwater based on synthetic polymer-polyacrylamide (also known as HiVis FR or HVFR). The low viscosity of HVFR (about 10 times lower than that of a crosslinked gel) allows a long fracture to be created and restricts height growth. Additionally, use of polyacrylamide instead of guar gives a larger value of retained conductivity. The full workflow for implementing HVFR for hydraulic fracturing in conventional formations includes candidate evaluation, HVFR laboratory testing, an integrated engineering approach to fracture modeling, operational considerations, and post-fracturing production analysis. The workflow evolved during the technology implementation cycle in a specific oil field, particularly the modeling step, which used a new high precision multiphysics (MP) model. The MP model provides an advanced, high-quality high- precision fracturing design to properly evaluate fracture geometry and proppant distribution by accounting for proppant settling in viscoelastic fluid and an accurate simulation of proppant placement when using a pulsing schedule. During the 2-year project, considerable success was achieved in expanding of the technology implementation scope. Several records were achieved on Kondinskoe oil field - a 150-t of ceramic proppant (SG, specific gravity,~3.1) were placed in a conventional reservoir by low-viscosity fracturing fluid and the first worldwide combination of viscous slickwater with channel fracturing technology was successfully performed. The use of HVFR, due to ability of fracture growth control, prevented breakthrough into the water-bearing zone. In addition, considerable improvement of operational efficiency was achieved due to use of cold water, lower amounts of additives, and less equipment, which resulted in a smaller location and environmental footprint. This first implementation of the viscous slickwater in conventional wells in Western Siberia enabled evaluating its effect on production rate. Increasing demand for maximizing production from low- permeability formations makes the result of this viscous slickwater implementation campaign of special interest. The application of a full engineering workflow, including design, execution, and evaluation of the Viscous slickwater treatments is a key to successful technology implementation and production optimization.


Sign in / Sign up

Export Citation Format

Share Document