Identification of Relationship Between Precipitation and Atmospheric Oscillations in Upper Ganga Basin

Author(s):  
Lalit Pal ◽  
C. S. P. Ojha
Keyword(s):  
Author(s):  
Surya Gupta ◽  
Shivam Tripathi ◽  
Rajiv Sinha ◽  
Sri Harsha Karumanchi ◽  
Debajyoti Paul ◽  
...  

2017 ◽  
Vol 21 (6) ◽  
pp. 3041-3060 ◽  
Author(s):  
Beas Barik ◽  
Subimal Ghosh ◽  
A. Saheer Sahana ◽  
Amey Pathak ◽  
Muddu Sekhar

Abstract. Meeting the growing water and food demands in a densely populated country like India is a major challenge. It requires an extensive investigation into the changing patterns of the checks and balances behind the maintenance of food security at the expense of depleting groundwater, along with high energy consumption. Here we present a comprehensive set of analyses which assess the present status of the water–food–energy nexus in India, along with its changing pattern, in the last few decades. We find that with the growth of population and consequent increase in the food demands, the food production has also increased, and this has been made possible with the intensification of irrigation. However, during the recent decade (after 1996), the increase in food production has not been sufficient to meet its growing demands, precipitating a decline in the per-capita food availability. We also find a statistically significant declining trend of groundwater storage in India during the last decade, as derived from the Gravity Recovery and Climate Experiment (GRACE) satellite datasets. Regional studies reveal contrasting trends between northern and western–central India. North-western India and the middle Ganga basin show a decrease in the groundwater storage as opposed to an increasing storage over western–central India. Comparison with well data reveals that the highest consistency of GRACE-derived storage data with available well measurements is in the middle Ganga basin. After analysing the data for the last 2 decades, we further showcase that, after a drought, the groundwater storage drops but is unable to recover to its original condition even after good monsoon years. The groundwater storage reveals a very strong negative correlation with the electricity consumption for agricultural usage, which may also be considered as a proxy for groundwater pumped for irrigation in a region. The electricity usage for agricultural purposes has an increasing trend and, interestingly, it does not have any correlation with the monsoon rainfall as computed with the original or de-trended variables. This reveals an important finding that the irrigation has been intensified irrespective of rainfall. This also resulted in a decreasing correlation between the food production and monsoon rainfall, revealing the increasing dependency of agricultural activities on irrigation. We conclude that irrigation has now become essential for agriculture to meet the food demand; however, it should be judiciously regulated and controlled, based on the water availability from monsoon rainfall, specifically after the drought years, as it is essential to recover from the deficits suffered previously.


Sadhana ◽  
1985 ◽  
Vol 8 (1) ◽  
pp. 93-121 ◽  
Author(s):  
M C Chaturvedi ◽  
Peter Rogers ◽  
Shyang-Lai Kung
Keyword(s):  

2005 ◽  
Vol 23 (4) ◽  
pp. 1093-1101 ◽  
Author(s):  
S. N. Tripathi ◽  
Sagnik Dey ◽  
A. Chandel ◽  
S. Srivastava ◽  
Ramesh P. Singh ◽  
...  

Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra measures global aerosol optical depth and optical properties since 2000. MODIS aerosol products are freely available and are being used for numerous studies. In this paper, we present a comparison of aerosol optical depth (AOD) retrieved from MODIS with Aerosol Robotic Network (AERONET) data for the year 2004 over Kanpur, an industrial city lying in the Ganga Basin in the northern part of India. AOD retrieved from MODIS (τaMODIS) at 0.55µm wavelength has been compared with the AERONET derived AOD (τaAERONET), within an optimum space-time window. Although the correlation between τaMODIS and τaAERONET during the post-monsoon and winter seasons (R2~0.71) is almost equal to that during the pre-monsoon and monsoon seasons (R2~0.72), MODIS is found to overestimate AOD during the pre-monsoon and monsoon period (characterized by severe dust loading) and underestimate during the post-monsoon and winter seasons. The absolute difference between τaMODIS and τaAERONET is found to be low (0.12±0.11) during the non-dust loading season and much higher (0.4±0.2) during dust-loading seasons. The absolute error in τaMODIS is found to be about ~25% of the absolute values of τaMODIS. Our comparison shows the importance of modifying the existing MODIS algorithm during the dust-loading seasons, especially in the Ganga Basin in northern part of India.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2344
Author(s):  
Sumant Kumar ◽  
Manish Kumar ◽  
Veerendra Kumar Chandola ◽  
Vinod Kumar ◽  
Ravi K. Saini ◽  
...  

Increased population and increasing demands for food in the Indo-Gangetic plain are likely to exert pressure on fresh water due to rise in demand for drinking and irrigation water. The study focuses on Bhojpur district, Bihar located in the central Ganga basin, to assess the groundwater quality for drinking and irrigation purpose and discuss the issues and challenges. Groundwater is mostly utilized in the study area for drinking and irrigation purposes (major crops sown in the area are rice and wheat). There were around 45 groundwater samples collected across the study region in the pre-monsoon season (year 2019). The chemical analytical results show that Ca2+, Mg2+ and HCO3− ions are present in abundance in groundwater and governing the groundwater chemistry. Further analysis shows that 66%, 69% and 84% of the samples exceeded the acceptable limit of arsenic (As), Fe and Mn respectively and other trace metals (Cu, Zn, Pb, Cd) are within the permissible limit of drinking water as prescribed by Bureau of Indian Standard for drinking water. Generally, high as concentration has been found in the aquifer (depth ranges from 20 to 40 m below ground surface) located in proximity of river Ganga. For assessing the irrigation water quality, sodium adsorption ratio (SAR) values, residual sodium carbonate (RSC), Na%, permeability index (PI) and calcium alteration index (CAI) were calculated and found that almost all the samples are found to be in good to excellent category for irrigation purposes. The groundwater facie has been classified into Ca-Mg-HCO3 type.


Sign in / Sign up

Export Citation Format

Share Document