scholarly journals PREDICTION OF GLUCOSE LEVEL IN DIABETICS WITH SUPPORT VECTOR REGRESSION

2020 ◽  
Vol 16 (1) ◽  
pp. 97-102
Author(s):  
Devi Wulandari ◽  
Agus Subekti

One of the common diabetes factors that people hear is that they consume too much or often consume sweet foods or drinks so that blood sugar in the human body increases. The times and increasingly sophisticated technology make it easier for someone to be able to predict a disease such as diabetes with machine learning techniques. Therefore, from the existing problems, a machine learning technique will be made in predicting glucose levels in diabetics. The aim is to predict glucose levels in diabetics and find the best algorithm from several comparison algorithms. The results of the experiments carried out by the support vector regression algorithm have a lower mean squared error value of 28.9480 compared to other comparative algorithms and visualize the error classification seen that Instance no 47 has a prediction of the highest plasma glucose value of 189.2305.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lasini Wickramasinghe ◽  
Rukmal Weliwatta ◽  
Piyal Ekanayake ◽  
Jeevani Jayasinghe

This paper presents the application of a multiple number of statistical methods and machine learning techniques to model the relationship between rice yield and climate variables of a major region in Sri Lanka, which contributes significantly to the country’s paddy harvest. Rainfall, temperature (minimum and maximum), evaporation, average wind speed (morning and evening), and sunshine hours are the climatic factors considered for modeling. Rice harvest and yield data over the last three decades and monthly climatic data were used to develop the prediction model by applying artificial neural networks (ANNs), support vector machine regression (SVMR), multiple linear regression (MLR), Gaussian process regression (GPR), power regression (PR), and robust regression (RR). The performance of each model was assessed in terms of the mean squared error (MSE), correlation coefficient (R), mean absolute percentage error (MAPE), root mean squared error ratio (RSR), BIAS value, and the Nash number, and it was found that the GPR-based model is the most accurate among them. Climate data collected until early 2019 (Maha season of year 2018) were used to develop the model, and an independent validation was performed by applying data of the Yala season of year 2019. The developed model can be used to forecast the future rice yield with very high accuracy.


Author(s):  
William Mounter ◽  
Huda Dawood ◽  
Nashwan Dawood

AbstractAdvances in metering technologies and machine learning methods provide both opportunities and challenges for predicting building energy usage in the both the short and long term. However, there are minimal studies on comparing machine learning techniques in predicting building energy usage on their rolling horizon, compared with comparisons based upon a singular forecast range. With the majority of forecasts ranges being within the range of one week, due to the significant increases in error beyond short term building energy prediction. The aim of this paper is to investigate how the accuracy of building energy predictions can be improved for long term predictions, in part of a larger study into which machine learning techniques predict more accuracy within different forecast ranges. In this case study the ‘Clarendon building’ of Teesside University was selected for use in using it’s BMS data (Building Management System) to predict the building’s overall energy usage with Support Vector Regression. Examining how altering what data is used to train the models, impacts their overall accuracy. Such as by segmenting the model by building modes (Active and dormant), or by days of the week (Weekdays and weekends). Of which it was observed that modelling building weekday and weekend energy usage, lead to a reduction of 11% MAPE on average compared with unsegmented predictions.


Diabetes Mellitus is due to the disorder of glucose metabolism because of defects in insulin secretion or insulin action. It has become a major health challenge nowadays. Monitoring and regulation of blood glucose is inevitable to avoid diabetic complications. Prediction of near future glucose levels and giving alert for appropriate action could be done by machine learning techniques. This would greatly assist the diabetes patients in the daily management of diabetes. This paper discusses the effectiveness of Support Vector Regression in diabetes management. The methodology has been applied to three different data sets and performance measure is analyzed with Root Mean Square Error values.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7034
Author(s):  
Yue Xu ◽  
Waqas Ahmad ◽  
Ayaz Ahmad ◽  
Krzysztof Adam Ostrowski ◽  
Marta Dudek ◽  
...  

The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.


2016 ◽  
Vol 9 (12) ◽  
pp. 13
Author(s):  
Philipp Kallerhoff

<p>This paper applies machine learning techniques to style investing. Support Vector Regression is applied to multi-factor investing based on momentum, dividend, quality, volatility and growth. The results show that Support Vector Regression selects stocks consistently with a higher efficiency ratio than a broad market investment and outperforms linear regression methods. The methods are applied to global stocks in the MSCI World index between 1996 and 2016. The behavior of both models is analyzed for economic sectors and over time. Interestingly, factors like low-volatility and momentum contribute both positively and negatively in some economic sectors and certain time periods.</p>


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Sign in / Sign up

Export Citation Format

Share Document