Technological and Industrial Applications Associated With Industry 4.0

2022 ◽  
Author(s):  
Christ P. Paul ◽  
Arackal N. Jinoop ◽  
Saurav K. Nayak ◽  
Alini C. Paul

Additive manufacturing is one of the nine technologies fuelling the fourth industrial revolution (Industry 4.0). High power lasers augmented with allied digital technologies is changing the entire manufacturing scenario through metal additive manufacturing by providing feature-based design and manufacturing with the technology called laser additive manufacturing (LAM). It enables the fabrication of customized components having complex and lightweight designs with high performance in a short period. The chapter compiles the evolution and global status of LAM technology highlighting its advantages and freedoms for various industrial applications. It discusses how LAM is contributing to Industry 4.0 for the fabrication of customized engineering and prosthetic components through case studies. It compiles research, development, and deployment scenarios of this new technology in developing economies along with the future scope of the technology.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2157
Author(s):  
Yousef Almadani ◽  
David Plets ◽  
Sander Bastiaens ◽  
Wout Joseph ◽  
Muhammad Ijaz ◽  
...  

Visible Light Communication (VLC) is a short-range optical wireless communication technology that has been gaining attention due to its potential to offload heavy data traffic from the congested radio wireless spectrum. At the same time, wireless communications are becoming crucial to smart manufacturing within the scope of Industry 4.0. Industry 4.0 is a developing trend of high-speed data exchange in automation for manufacturing technologies and is referred to as the fourth industrial revolution. This trend requires fast, reliable, low-latency, and cost-effective data transmissions with fast synchronizations to ensure smooth operations for various processes. VLC is capable of providing reliable, low-latency, and secure connections that do not penetrate walls and is immune to electromagnetic interference. As such, this paper aims to show the potential of VLC for industrial wireless applications by examining the latest research work in VLC systems. This work also highlights and classifies challenges that might arise with the applicability of VLC and visible light positioning (VLP) systems in these settings. Given the previous work performed in these areas, and the major ongoing experimental projects looking into the use of VLC systems for industrial applications, the use of VLC and VLP systems for industrial applications shows promising potential.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 28 ◽  
Author(s):  
Salvatore Cavalieri ◽  
Marco Giuseppe Salafia

In the context of Industry 4.0, lot of effort is being put to achieve interoperability among industrial applications. As the definition and adoption of communication standards are of paramount importance for the realization of interoperability, during the last few years different organizations have developed reference architectures to align standards in the context of the fourth industrial revolution. One of the main examples is the reference architecture model for Industry 4.0, which defines the asset administration shell as the corner stone of the interoperability between applications managing manufacturing systems. Inside Industry 4.0 there is also so much interest behind the standard open platform communications unified architecture (OPC UA), which is listed as the one recommendation for realizing the communication layer of the reference architecture model. The contribution of this paper is to give some insights behind modelling techniques that should be adopted during the definition of OPC UA Information Model exposing information of the very recent metamodel defined for the asset administration shell. All the general rationales and solutions here provided are compared with the current OPC UA-based existing representation of asset administration shell provided by literature. Specifically, differences will be pointed out giving to the reader advantages and disadvantages behind each solution.


2018 ◽  
Vol 14 (3) ◽  
pp. 17-29 ◽  
Author(s):  
Olha Prokopenko ◽  
Rurik Holmberg ◽  
Vitaliy Omelyanenko

To ensure and strengthen the development of high-tech R&D and its industrial applications in the long-term perspective, information and communication technologies (ICT) cooperation tools with national and international institutions, network associations and firms are of great importance. To solve this problem, a joint systematic and coordinated work to develop institutions that can provide crucial support to innovation process is crucial. For these purposes, higher educational institutions (HEI) innovation activities information and communication support and technological development analysis are critically important. The purpose of this study is to analyze the existing ICT toolkit, which is used to manage R&D and various industrial applications, and to develop a conceptual framework for the implementation of these tools for the participation of universities in innovation networks. To answer this question, authors begin by taking a closer look at the new role of universities in the development of knowledge generation in a global environment, as well as problems and tendencies under conditions of postindustrial society. The new role of universities in knowledge generation in the global environment development, and problems and tendencies under the conditions of postindustrial society were outlined. Modern ICT components, which are necessary for universities to participate in the innovation networks, were analyzed. Some cases of foreign experience in the scientific and innovation networks of current prototypes of Industry 4.0 development were discussed, and the possibilities of its adaptation to national innovation system formation conditions in Ukraine were identified. By theoretical and empirical examining, the authors propose more complete understanding of modern ICT components, which are necessary for universities to participate in innovation networks. Cases of foreign experience in the scientific and innovation networks of current prototypes of Industry 4.0 development were investigated. Moreover, the evidence from this study suggests a variety of factors related to the possibilities to adapt ICT tools to national innovation system formation in Ukraine.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saquib Rouf ◽  
Ankush Raina ◽  
Mir Irfan Ul Haq ◽  
Nida Naveed

Purpose The involvement of wear, friction and lubrication in engineering systems and industrial applications makes it imperative to study the various aspects of tribology in relation with advanced technologies and concepts. The concept of Industry 4.0 and its implementation further faces a lot of barriers, particularly in developing economies. Real-time and reliable data is an important enabler for the implementation of the concept of Industry 4.0. For availability of reliable and real-time data about various tribological systems is crucial in applying the various concepts of Industry 4.0. This paper aims to attempt to highlight the role of sensors related to friction, wear and lubrication in implementing Industry 4.0 in various tribology-related industries and equipment. Design/methodology/approach A through literature review has been done to study the interrelationships between the availability of tribology-related data and implementation of Industry 4.0 are also discussed. Relevant and recent research papers from prominent databases have been included. A detailed overview about the various types of sensors used in generating tribological data is also presented. Some studies related to the application of machine learning and artificial intelligence (AI) are also included in the paper. A discussion on fault diagnosis and cyber physical systems in connection with tribology has also been included. Findings Industry 4.0 and tribology are interconnected through various means and the various pillars of Industry 4.0 such as big data, AI can effectively be implemented in various tribological systems. Data is an important parameter in the effective application of concepts of Industry 4.0 in the tribological environment. Sensors have a vital role to play in the implementation of Industry 4.0 in tribological systems. Determining the machine health, carrying out maintenance in off-shore and remote mechanical systems is possible by applying online-real-time data acquisition. Originality/value The paper tries to relate the pillars of Industry 4.0 with various aspects of tribology. The paper is a first of its kind wherein the interdisciplinary field of tribology has been linked with Industry 4.0. The paper also highlights the role of sensors in generating tribological data related to the critical parameters, such as wear rate, coefficient of friction, surface roughness which is critical in implementing the various pillars of Industry 4.0.


Author(s):  
Salvatore Cavalieri ◽  
Salvatore Mulè

AbstractA key requirement of realizing the connected world featured by IoT is to ensure interoperability among different connected devices. Interoperability is also at the basis of the realization of the novel vision of Industry 4.0; a lot effort is put to make interoperable the interchange of information between industrial applications, also including IoT ecosystems. For this reason, during these last years, several approaches aimed to enhance interoperability between industrial applications and IoT appeared in the literature. In this paper an interoperability proposal is presented. It is based on the idea to realize interworking between the two standards considered among the reference ones in the industrial and IoT domains. They are the OPC UA for the industrial domain and oneM2M for the IoT. Interworking is realized in such a way to allow industrial applications based on OPC UA to acquire information coming from oneM2M-based IoT devices. The proposal allows an OPC UA Server to publish each piece of information produced by oneM2M-based IoT devices, so that this information may be consumed by industrial applications playing the OPC UA Client role.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2774 ◽  
Author(s):  
Rojeena Bajracharya ◽  
Rakesh Shrestha ◽  
Haejoon Jung

This paper aims to unlock the unlicensed band potential in realizing the Industry 4.0 communication goals of the Fifth-Generation (5G) and beyond. New Radio in the Unlicensed band (NR-U) is a new NR Release 16 mode of operation that has the capability to offer the necessary technology for cellular operators to integrate the unlicensed spectrum into 5G networks. NR-U enables both uplink and downlink operation in unlicensed bands, supporting 5G advanced features of ultra-high-speed, high bandwidth, low latency, and improvement in the reliability of wireless communications, which is essential to address massive-scale and highly-diverse future industrial networks. This paper highlights NR-U as a next-generation communication technology for smart industrial network communication and discusses the technology trends adopted by 5G in support of the Industry 4.0 revolution. However, due to operation in the shared/unlicensed spectrum, NR-U possesses several regulatory and coexistence challenges, limiting its application for operationally intensive environments such as manufacturing, supply chain, transportation systems, and energy. Thus, we discuss the significant challenges and potential solution approaches such as shared maximum channel occupancy time (MCOT), handover skipping, the self-organized network (SON), the adaptive back-off mechanism, and the multi-domain coexistence approach to overcome the unlicensed/shared band challenges and boost the realization of NR-U technology in mission-critical industrial applications. Further, we highlight the role of machine learning in providing the necessary intelligence and adaptation mechanisms for the realization of industrial 5G communication goals.


2019 ◽  
Vol 9 (18) ◽  
pp. 3865 ◽  
Author(s):  
Mehrshad Mehrpouya ◽  
Amir Dehghanghadikolaei ◽  
Behzad Fotovvati ◽  
Alireza Vosooghnia ◽  
Sattar S. Emamian ◽  
...  

Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations.


2021 ◽  
Vol 11 (8) ◽  
pp. 3568
Author(s):  
Amr T. Sufian ◽  
Badr M. Abdullah ◽  
Muhammad Ateeq ◽  
Roderick Wah ◽  
David Clements

The fourth industrial revolution is the transformation of industrial manufacturing into smart manufacturing. The advancement of digital technologies that make the trend Industry 4.0 are considered as the transforming force that will enable this transformation. However, Industry 4.0 digital technologies need to be connected, integrated and used effectively to create value and to provide insightful information for data driven manufacturing. Smart manufacturing is a journey and requires a roadmap to guide manufacturing organizations for its adoption. The objective of this paper is to review different methodologies and strategies for smart manufacturing implementation to propose a simple and a holistic roadmap that will support the transition into smart factories and achieve resilience, flexibility and sustainability. A comprehensive review of academic and industrial literature was preformed based on multiple stage approach and chosen criteria to establish existing knowledge in the field and to evaluate latest trends and ideas of Industry 4.0 and smart manufacturing technologies, techniques and applications in the manufacturing industry. These criteria are sub-grouped to fit within various stages of the proposed roadmap and attempts to bridge the gap between academia and industry and contributes to a new knowledge in the literature. This paper presents a conceptual approach based on six stages. In each stage, key enabling technologies and strategies are introduced, the common challenges, implementation tips and case studies of industrial applications are discussed to potentially assist in a successful adoption. The significance of the proposed roadmap serve as a strategic practical tool for rapid adoption of Industry 4.0 technologies for smart manufacturing and to bridge the gap between the advanced technologies and their application in manufacturing industry, especially for SMEs.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 300
Author(s):  
Bashir Salah ◽  
Ali M. Alsamhan ◽  
Sajjad Khan ◽  
Mohammed Ruzayqat

Industry 4.0 allows for greater flexibility in production processes so that products can be customized (i.e., mass customization). Innovative production techniques in an industrial liquid/yogurt filling machine (YFM) improved efficiency in the beverage industry. In this study, we have introduced the second phase designed control architecture of our YFM based on the concepts of industry 4.0 incorporating an NFC platform for improving customer satisfaction. Especially during this pandemic period, wireless technologies have been ubiquitous and pervasive for customized products. The basic components of the YFM have been described. High-level control architecture programmed fully automated filling operations, and the design stage of the development of a PFC-based controller for the YFM is elaborated. For the evaluation of the proposed control system, the operations of the electric/pneumatic input devices and actuators were simulated on FluidSIM-MecLab. The results of the simulation verify the design logic of the PFC-based controller. Comparisons were made between different production types using the developing YFM. A complex learning environment replicating a real production system to understand, learn, and apply modern manufacturing approaches has been developed. Through the creation of this YFM, the academic environment and industrial applications are combined. Consequently, the problem verification is becoming more realistic and more efficient than online (trial and error) automation programming.


Sign in / Sign up

Export Citation Format

Share Document