scholarly journals Future Is Unlicensed: Private 5G Unlicensed Network for Connecting Industries of Future

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2774 ◽  
Author(s):  
Rojeena Bajracharya ◽  
Rakesh Shrestha ◽  
Haejoon Jung

This paper aims to unlock the unlicensed band potential in realizing the Industry 4.0 communication goals of the Fifth-Generation (5G) and beyond. New Radio in the Unlicensed band (NR-U) is a new NR Release 16 mode of operation that has the capability to offer the necessary technology for cellular operators to integrate the unlicensed spectrum into 5G networks. NR-U enables both uplink and downlink operation in unlicensed bands, supporting 5G advanced features of ultra-high-speed, high bandwidth, low latency, and improvement in the reliability of wireless communications, which is essential to address massive-scale and highly-diverse future industrial networks. This paper highlights NR-U as a next-generation communication technology for smart industrial network communication and discusses the technology trends adopted by 5G in support of the Industry 4.0 revolution. However, due to operation in the shared/unlicensed spectrum, NR-U possesses several regulatory and coexistence challenges, limiting its application for operationally intensive environments such as manufacturing, supply chain, transportation systems, and energy. Thus, we discuss the significant challenges and potential solution approaches such as shared maximum channel occupancy time (MCOT), handover skipping, the self-organized network (SON), the adaptive back-off mechanism, and the multi-domain coexistence approach to overcome the unlicensed/shared band challenges and boost the realization of NR-U technology in mission-critical industrial applications. Further, we highlight the role of machine learning in providing the necessary intelligence and adaptation mechanisms for the realization of industrial 5G communication goals.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2157
Author(s):  
Yousef Almadani ◽  
David Plets ◽  
Sander Bastiaens ◽  
Wout Joseph ◽  
Muhammad Ijaz ◽  
...  

Visible Light Communication (VLC) is a short-range optical wireless communication technology that has been gaining attention due to its potential to offload heavy data traffic from the congested radio wireless spectrum. At the same time, wireless communications are becoming crucial to smart manufacturing within the scope of Industry 4.0. Industry 4.0 is a developing trend of high-speed data exchange in automation for manufacturing technologies and is referred to as the fourth industrial revolution. This trend requires fast, reliable, low-latency, and cost-effective data transmissions with fast synchronizations to ensure smooth operations for various processes. VLC is capable of providing reliable, low-latency, and secure connections that do not penetrate walls and is immune to electromagnetic interference. As such, this paper aims to show the potential of VLC for industrial wireless applications by examining the latest research work in VLC systems. This work also highlights and classifies challenges that might arise with the applicability of VLC and visible light positioning (VLP) systems in these settings. Given the previous work performed in these areas, and the major ongoing experimental projects looking into the use of VLC systems for industrial applications, the use of VLC and VLP systems for industrial applications shows promising potential.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1464
Author(s):  
Mohammedhusen Manekiya ◽  
Abhinav Kumar ◽  
Ashish Yadav ◽  
Massimo Donelli

With an ever increasing demand for data, better and efficient spectrum operation has become crucial in cellular networks. In this paper, we present a detailed survey of various resource allocation schemes that have been considered for the cellular network’s operation in the unlicensed spectrum. The key channel access mechanisms for cellular network’s operation in the unlicensed bands are discussed. The various channel selection techniques are explored and their operation explained. The prime issue of fairness between cellular and Wi-Fi networks is discussed, along with suitable resource allocation techniques that help in achieving this fairness. We analyze the coverage, capacity, and impact of coordination in LTE-U systems. Furthermore, we study and discuss the impact and discussed the impact of various traffic type, environments, latency, handover, and scenarios on LTE-U’s performance. The new upcoming 5G New Radio and MulteFire is briefly described along with some of the critical aspects of LTE-U which require further research.


2002 ◽  
Vol 124 (4) ◽  
pp. 1025-1031 ◽  
Author(s):  
M. Spirig ◽  
J. Schmied ◽  
P. Jenckel ◽  
U. Kanne

The use of magnetic bearing in industrial applications has increased due to their unique properties. Nowadays efficiency and predictability in handling rotors on magnetic bearings is asked with the same standard as conventional rotors on oil or roller bearings. First of all one must be aware of the special technical properties of magnetic bearing designs. The dynamic behavior of the rotor combined with requirements of the application define the desired bearing characteristic. With modern tools covering the mechanical aspects as well as the electronic controllers and their digital implementation on a DSP, these properties can be designed. However, despite the use of such efficient tools engineering practice is needed. Therefore this paper summarizes the major steps in the control design process of industrial applications. Three rotors supported on magnetic bearing with their specific dynamic behavior are presented: a very small high speed spindle (120,000 rpm); a small industrial turbo molecular pump rotor (36,000 rpm); and a large multistage centrifugal compressor (600 to 6300 rmp). The results of the analyses and their experimental verification are given.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012014
Author(s):  
Nikita Levichev ◽  
Joost R. Duflou

Abstract Laser cutting is a well-established industrial process for sheet metal applications. However, cutting thick plates is still accompanied by problems because of the characteristic limited process parameter window. Since cutting by means of fiber lasers has become dominant, tailored solutions are required in such systems for industrial applications. The development of a robust real-time monitoring system, which adapts the process parameters according to a specific quality requirement, implies a significant step forward towards automated laser cutting and increases the process robustness and performance. In this work, a coaxial multi-sensor monitoring system is tested for fiber laser cutting of stainless steel thick plates. A high-speed camera and a photodiode sensor have been selected for this investigation. Experiments at different cutting speeds, representing primary cut quality cases, have been conducted and various features of the obtained process zone signals have been examined. Finally, the feasibility of industrial application of the developed setup for high-power fiber laser cutting is discussed, followed by several implementation recommendations.


Author(s):  
Christ P. Paul ◽  
Arackal N. Jinoop ◽  
Saurav K. Nayak ◽  
Alini C. Paul

Additive manufacturing is one of the nine technologies fuelling the fourth industrial revolution (Industry 4.0). High power lasers augmented with allied digital technologies is changing the entire manufacturing scenario through metal additive manufacturing by providing feature-based design and manufacturing with the technology called laser additive manufacturing (LAM). It enables the fabrication of customized components having complex and lightweight designs with high performance in a short period. The chapter compiles the evolution and global status of LAM technology highlighting its advantages and freedoms for various industrial applications. It discusses how LAM is contributing to Industry 4.0 for the fabrication of customized engineering and prosthetic components through case studies. It compiles research, development, and deployment scenarios of this new technology in developing economies along with the future scope of the technology.


2020 ◽  
Vol 12 (7) ◽  
pp. 3012 ◽  
Author(s):  
Panrawee Rungskunroch ◽  
Yuwen Yang ◽  
Sakdirat Kaewunruen

At present, many countries around the world have significantly invested in sustainable transportation systems, especially for high-speed rail (HSR) infrastructures, since they are believed to improve economies, and regenerate regional and business growth. In this study, we focus on economic growth, dynamic land use, and urban mobility. The emphasis is placed on testing a hypothesis about whether HSRs can enable socio-economic development. Real case studies using big data from large cities in China, namely Shanghai province and Minhang districts, are taken into account. Socio-technical information such as employment rate, property pricing, and agglomeration in the country’s economy is collected from the China Statistics Bureau and the China Academy of Railway Sciences for analyses. This research aims to re-examine practical factors resulting from HSR’s impact on urban areas by using ANOVA analysis and dummy variable regression to analyse urban dynamics and property pricing. In addition, this study enhances the prediction outcomes that lead to urban planning strategies for the business area. The results reveal that there are various effects (i.e., regional accessibility, city development plans, and so on) required to enable the success of HSR infrastructure in order to enrich urban dynamics and land pricing. This paper also highlights critical perspectives towards sustainability, which are vital to social and economic impacts. In addition, this study provides crucial perspectives on sustainable developments for future HSR projects.


Author(s):  
Davide Ferretto ◽  
Roberta Fusaro ◽  
Nicole Viola

Several well-established best practices and reliable tools have been developed along the years to support aircraft conceptual and preliminary design. In this context, one of the most widely used tool is the Matching Chart (MC), a graphical representation of the different performance requirements (curves representing the thrust-to-weight ratio (T/W) requirement as function of the wing loading (W/S)) for each mission phase. The exploitation of this tool allows the identification of a feasible design space as well as the definition of a reference vehicle configuration in terms of maximum thrust, maximum take-off weight, and wing surface since the very beginning of the design process. Although the tool was originally developed for conventional aircraft, several extensions and updates of the mathematical models have been proposed over the years to widen its application to innovative configurations. Following this trend, this paper presents a further evolution of the MC model to support the conceptual design of high-speed transportation systems, encompassing supersonic and hypersonic flight vehicles. At this purpose, this paper reports and discusses the updates of the methodology laying behind the generation of the MC for high-speed transportation. Eventually, the results of the validation of the updated methodology and tool are reported, using as case study, the STRATOFLY MR3 vehicle configuration, a Mach 8 antipodal civil transportation system, currently under development within the H2020 STRATOFLY project.


Sign in / Sign up

Export Citation Format

Share Document