scholarly journals Damage Assessment in Japan and Potential Use of New Technologies in Damage Assessment

Author(s):  
K. Kusunoki

AbstractRight after an earthquake, it is quite important to evaluate the damage level of the buildings in the affected area. In Japan, a rapid inspection is conducted to evaluate the risk of collapse due to an aftershock. If any damage is detected, it is required to conduct damage classification, which takes time but categorizes its damage into five damage categories. Japan has a standard for both rapid inspection and damage classification. They are briefed in this chapter. Similar to the damage classification, the loss of the house and home contents for the earthquake insurance. The method for earthquake insurance is also introduced. Since they are based on visual inspection, it is quite difficult to investigate the damage of the high-rise buildings and buildings covered by finishing. Recently, many kinds of research are conducted to use sensors for automatic and realtime damage classification. A structural health monitoring method with accelerometers based on the capacity spectrum method, which is currently installed into more than 40 buildings, is also introduced.

2021 ◽  
Author(s):  
Shiran Havivi ◽  
Stanley R. Rotman ◽  
Dan G. Blumberg ◽  
Shimrit Maman

<p>The damage caused by a natural disaster in rural areas differs in nature, extent, landscape and in structure, from the damage in urban environments. Previous and current studies focus mainly on mapping damaged structures in urban areas after catastrophe events such as an earthquake or tsunami. Yet, research focusing on the damage level or its distribution in rural areas is absent. In order to apply an emergency response and for effective disaster management, it is necessary to understand and characterize the nature of the damage in each different environment. </p><p>Havivi et al. (2018), published a damage assessment algorithm that makes use of SAR images combined with optical data, for rapid mapping and compiling a damage assessment map following a natural disaster. The affected areas are analyzed using interferometric SAR (InSAR) coherence. To overcome the loss of coherence caused by changes in vegetation, optical images are used to produce a mask by computing the Normalized Difference Vegetation Index (NDVI) and removing the vegetated area from the scene. Due to the differences in geomorphological settings and landuse\landcover between rural and urban settlements, the above algorithm is modified and adjusted by inserting the Modified Normalized Difference Water Index (MNDWI) to better suit rural environments and their unique response after a disaster. MNDWI is used for detection, identification and extraction of waterbodies (such as irrigation canals, streams, rivers, lakes, etc.), allowing their removal which causes lack of coherence at the post stage of the event. Furthermore, it is used as an indicator for highlighting prone regions that might be severely affected pre disaster event. Thresholds are determined for the co-event coherence map (≤ 0.5), the NDVI (≥ 0.4) and the MNDWI (≥ 0), and the three layers are combined into one. Based on the combined map, a damage assessment map is generated. </p><p>As a case study, this algorithm was applied to the areas affected by multi-hazard event, following the Sulawesi earthquake and subsequent tsunami in Palu, Indonesia, which occurred on September 28th, 2018. High-resolution COSMO-SkyMed images pre and post the event, alongside a Sentinel-2 image pre- event are used as inputs. The output damage assessment map provides a quantitative assessment and spatial distribution of the damage in both the rural and urban environments. The results highlight the applicability of the algorithm for a variety of disaster events and sensors. In addition, the results enhance the contribution of the water component to the analysis pre and post the event in rural areas. Thus, while in urban regions the spatial extent of the damage will occur in its proximity to the coastline or the fault, rural regions, even in significant distance will experience extensive damage due secondary hazards as liquefaction processes.     </p>


1991 ◽  
Vol 37 (10) ◽  
pp. 2395-2398 ◽  
Author(s):  
J. Muntasell ◽  
M. Barrio ◽  
J. Font ◽  
D. O. López ◽  
J. Li. Tamarit ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
pp. 333-360 ◽  
Author(s):  
Ryan Hoult ◽  
Helen Goldsworthy ◽  
Elisa Lumantarna

This research investigates the development of analytical fragility functions for reinforced concrete shear wall buildings in Australia. A building stock for the city of Melbourne is used in conducting an assessment of these types of structures. The assessment uses the best information available for selecting the building parameters applicable to the low-to-moderate seismic region, site soil class, expected earthquake ground motions, and site response. The capacity spectrum method is used to derive vulnerability functions for low-, mid-, and high-rise reinforced concrete shear wall buildings. Although there is a paucity of earthquake damage data available in Australia, some comparisons are made using the results from the fragility functions derived here to the damage data from the Newcastle earthquake in 1989.


2018 ◽  
Vol 45 ◽  
pp. 00041
Author(s):  
Andrzej Kuliczkowski ◽  
Stanisław Nogaj

Technologies for the trenchless rehabilitation of pipelines using various types of coatings have been used for almost half a century. Considering that the assumed life expectancy of such renewed pipelines is 50 years, it will be necessary to assess their technical condition in the near future. The aim of this article is to attempt to answer the question "Do existing damage classification methods allow for the full and reliable assessment of the sewers already renewed with rehabilitation coatings?". The scope of the article, and its original part, is to describe how the problem of damage assessment of rehabilitation coatings has been included in various methods of classification of underground infrastructure pipelines, and conducting a comparison that compares these methods in terms of the damages described. An interpretation of the results of the research on rehabilitation coatings operated in various time periods, starting from those recently applied to those operating for over 30 years, was also made. The result of the analysis is to present the differences and deficiencies in the damage classification methods discussed.


2019 ◽  
Vol 256 ◽  
pp. 02008
Author(s):  
Fangcheng Zhou ◽  
Tao Wang ◽  
Changqing Ma ◽  
Pengfei Lei ◽  
Xinyi Zhang ◽  
...  

The casing damage is a common problem encountered in the oil and gas field, and the casing damage will cause huge losses to the economic benefits of the oil and gas field. Grading the damage degree of the casing damage well can provide theoretical support for the oilfield workover operation and save the cost of workover. The casing damage classification has a strong guiding significance for the economic evaluation of the casing damage repair and the development of appropriate workover technology. After a review research on domestic and foreigner papers on the study of casing damage classification, it can be found that there is no mature theory and method for casing damage classification. After analyzing the entire workover process, the concept of the damage repair evaluation expert system is proposed to complete the entire workover process, evaluate the cost, and help the oil and gas field to obtain the best benefits.


2012 ◽  
Vol 503-504 ◽  
pp. 1301-1305
Author(s):  
Xia Chen ◽  
Min Liu ◽  
Lin Li

With respect to airport damage assessment problem, the analysis method is proposed. The airport damage is assessed according to the secondary fuzzy comprehensive evaluation model. Then the evaluation method of target damage level is given by the compare methods of interval numbers. Finally, the example calculations are given to demonstrating the effectiveness of this method.


2018 ◽  
Vol 10 (11) ◽  
pp. 1804 ◽  
Author(s):  
Minyoung Jung ◽  
Junho Yeom ◽  
Yongil Kim

Combining pre-disaster optical and post-disaster synthetic aperture radar (SAR) satellite data is essential for the timely damage investigation because the availability of data in a disaster area is usually limited. This article proposes a novel method to assess damage in urban areas by analyzing combined pre-disaster very high resolution (VHR) optical data and post-disaster polarimetric SAR (PolSAR) data, which has rarely been used in previous research because the two data have extremely different characteristics. To overcome these differences and effectively compare VHR optical data and PolSAR data, a technique to simulate polarization orientation angles (POAs) in built-up areas was developed using building orientations extracted from VHR optical data. The POA is an intrinsic parameter of PolSAR data and has a physical relationship with building orientation. A damage level indicator was also proposed, based on the consideration of diminished homogeneity of POA values by damaged buildings. The indicator is the difference between directional dispersions of the pre and post-disaster POA values. Damage assessment in urban areas was conducted by using the indicator calculated with the simulated pre-disaster POAs from VHR optical data and the derived post-disaster PolSAR POAs. The proposed method was validated on the case study of the 2011 tsunami in Japan using pre-disaster KOMPSAT-2 data and post-disaster ALOS/PALSAR-1 data. The experimental results demonstrated that the proposed method accurately simulated the POAs with a root mean square error (RMSE) value of 2.761° and successfully measured the level of damage in built-up areas. The proposed method can facilitate efficient and fast damage assessment in built-up areas by comparing pre-disaster VHR optical data and post-disaster PolSAR data.


2004 ◽  
Vol 20 (2) ◽  
pp. 377-394 ◽  
Author(s):  
Sergio Lagomarsino ◽  
Stefano Podestà

This paper describes a new methodology used to assess seismic damage in the churches of Umbria and the Marches, which is based on 18 indicators, each representative of a possible collapse mechanism for a macroelement. The subdivision of the church into macroelements consists of the identification of architectonic elements in which the seismic behavior is almost independent from the rest of the structure (façade, apse, dome, bell tower, etc.). For each macroelement, by considering its typology and connection to the rest of the church, it is possible to identify the damage modes and the collapse mechanisms. During inspection operations, the surveyors must indicate: (a) the actual macroelements; (b) the damage level; and (c) the vulnerability of the church to that mechanism, related to some specific details of construction. From these data a damage score is defined, which is a number from 0 to 1, obtained as a normalized mean of the damage grades in each mechanism. The analysis of the collected data (more than 1,000 churches in Umbria) allows the definition of the correlation between macroseismic intensity and damage.


Sign in / Sign up

Export Citation Format

Share Document