Improvement of Ferroelectrics Properties of Lead-Free Thin Films by Sol Gel Process Optimization

Author(s):  
V. Casuscelli ◽  
R. Scaldaferri ◽  
P. Aprea ◽  
P. S. Barbato ◽  
D. Caputo
2007 ◽  
Vol 358 (1) ◽  
pp. 175-180 ◽  
Author(s):  
Kiyotaka Tanaka ◽  
Ken-Ichi Kakimoto ◽  
Hitoshi Ohsato ◽  
Takashi Iijima

2016 ◽  
Vol 30 (13) ◽  
pp. 1650157 ◽  
Author(s):  
Linlin Yao ◽  
Kongjun Zhu

The citrate complexing sol–gel process to fabricate lead-free (K,[Formula: see text]Na)NbO3 ferroelectric thin films was studied. Soluble niobium source of niobium–citric acid (Nb–CA) solution was utilized as a raw material to synthesize (K,[Formula: see text]Na)NbO3 thin films, by pyrolyzing at 450–550[Formula: see text]C and annealing at 650[Formula: see text]C. The film pyrolyzed at 450[Formula: see text]C shows poor crystallization with porous morphology, whereas the film pyrolyzed at 550[Formula: see text]C appear to be well-crystallized and denser, and the ferroelectricity was also proved by the [Formula: see text]–[Formula: see text] hysteresis loop measurement.


2006 ◽  
Vol 294 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Kiyotaka Tanaka ◽  
Ken-ichi Kakimoto ◽  
Hitoshi Ohsato

Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


Author(s):  
Jun Li ◽  
Xin-Gui Tang ◽  
Qiu-Xiang Liu ◽  
Yan-Ping Jiang ◽  
Wen-Hua Li ◽  
...  

2011 ◽  
Vol 509 (30) ◽  
pp. 7854-7860 ◽  
Author(s):  
A. Esmaielzadeh Kandjani ◽  
M. Farzalipour Tabriz ◽  
O. Mohammad Moradi ◽  
H.R. Rezaeian Mehr ◽  
S. Ahmadi Kandjani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document