Fact Checking: Detection of Check Worthy Statements Through Support Vector Machine and Feed Forward Neural Network

Author(s):  
Sajjad Ahmed ◽  
Klestia Balla ◽  
Knut Hinkelmann ◽  
Flavio Corradini
2021 ◽  
Author(s):  
Shubhangi Pande ◽  
Neeraj Kumar Rathore ◽  
Anuradha Purohit

Abstract Machine learning applications employ FFNN (Feed Forward Neural Network) in their discipline enormously. But, it has been observed that the FFNN requisite speed is not up the mark. The fundamental causes of this problem are: 1) for training neural networks, slow gradient descent methods are broadly used and 2) for such methods, there is a need for iteratively tuning hidden layer parameters including biases and weights. To resolve these problems, a new emanant machine learning algorithm, which is a substitution of the feed-forward neural network, entitled as Extreme Learning Machine (ELM) introduced in this paper. ELM also come up with a general learning scheme for the immense diversity of different networks (SLFNs and multilayer networks). According to ELM originators, the learning capacity of networks trained using backpropagation is a thousand times slower than the networks trained using ELM, along with this, ELM models exhibit good generalization performance. ELM is more efficient in contradiction of Least Square Support Vector Machine (LS-SVM), Support Vector Machine (SVM), and rest of the precocious approaches. ELM’s eccentric outline has three main targets: 1) high learning accuracy 2) less human intervention 3) fast learning speed. ELM consider as a greater capacity to achieve global optimum. The distribution of application of ELM incorporates: feature learning, clustering, regression, compression, and classification. With this paper, our goal is to familiarize various ELM variants, their applications, ELM strengths, ELM researches and comparison with other learning algorithms, and many more concepts related to ELM.


2021 ◽  
Author(s):  
Shubhangi Pande ◽  
Neeraj Rathore ◽  
Anuradha Purohit

Abstract Machine learning applications employ FFNN (Feed Forward Neural Network) in their discipline enormously. But, it has been observed that the FFNN requisite speed is not up the mark. The fundamental causes of this problem are: 1) for training neural networks, slow gradient descent methods are broadly used and 2) for such methods, there is a need for iteratively tuning hidden layer parameters including biases and weights. To resolve these problems, a new emanant machine learning algorithm, which is a substitution of the feed-forward neural network, entitled as Extreme Learning Machine (ELM) introduced in this paper. ELM also come up with a general learning scheme for the immense diversity of different networks (SLFNs and multilayer networks). According to ELM originators, the learning capacity of networks trained using backpropagation is a thousand times slower than the networks trained using ELM, along with this, ELM models exhibit good generalization performance. ELM is more efficient in contradiction of Least Square Support Vector Machine (LS-SVM), Support Vector Machine (SVM), and rest of the precocious approaches. ELM’s eccentric outline has three main targets: 1) high learning accuracy 2) less human intervention 3) fast learning speed. ELM consider as a greater capacity to achieve global optimum. The distribution of application of ELM incorporates: feature learning, clustering, regression, compression, and classification. With this paper, our goal is to familiarize various ELM variants, their applications, ELM strengths, ELM researches and comparison with other learning algorithms, and many more concepts related to ELM.


2019 ◽  
pp. 65-77
Author(s):  
Piyush Kumar Shukla ◽  
◽  
◽  
Prashant Kumar Shukla

The healthcare sector is under pressure to embrace new technologies that are available on the market in order to enhance the overall quality of their services. Telecommunications systems are combined with computers, interconnection, mobility, data storage, and information analytics. Technology that is centred on the Internet of Things (IoT) is the order of the day. Because of the limited availability of human resources and infrastructure, it is becoming more necessary to monitor chronic patients on a continual basis as their conditions worsen. A cloud-based architecture, which can handle all of the aforementioned concerns, may offer effective solutions to the health-care sector. In order to create software that combines cloud computing and mobile technologies for health care monitoring systems, we have set a goal of developing software. A technique developed by proposed method is used to extract steady fractal values from electrocardiogram (ECG) data, which has never been tried before by any other researcher in the area of creating a computer-aided diagnostic system for arrhythmia. Based on the findings, it can be concluded that the support vector machine has achieved the highest possible classification accuracy for fractal features. While being compared to the other two classifiers, which are the feed forward and feedback neural network models, the support vector machine outperforms them both. In addition, it should be highlighted that the sensitivity of the feed forward neural network and the support vector machine provide results that are comparable (92.08 percent and 90.36 percent, respectively).


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Abebe Belay Adege ◽  
Hsin-Piao Lin ◽  
Getaneh Berie Tarekegn ◽  
Yirga Yayeh Munaye ◽  
Lei Yen

Indoor and outdoor positioning lets to offer universal location services in industry and academia. Wi-Fi and Global Positioning System (GPS) are the promising technologies for indoor and outdoor positioning, respectively. However, Wi-Fi-based positioning is less accurate due to the vigorous changes of environments and shadowing effects. GPS-based positioning is also characterized by much cost, highly susceptible to the physical layouts of equipment, power-hungry, and sensitive to occlusion. In this paper, we propose a hybrid of support vector machine (SVM) and deep neural network (DNN) to develop scalable and accurate positioning in Wi-Fi-based indoor and outdoor environments. In the positioning processes, we primarily construct real datasets from indoor and outdoor Wi-Fi-based environments. Secondly, we apply linear discriminate analysis (LDA) to construct a projected vector that uses to reduce features without affecting information contents. Thirdly, we construct a model for positioning through the integration of SVM and DNN. Fourthly, we use online datasets from unknown locations and check the missed radio signal strength (RSS) values using the feed-forward neural network (FFNN) algorithm to fill the missed values. Fifthly, we project the online data through an LDA-based projected vector. Finally, we test the positioning accuracies and scalabilities of a model created from a hybrid of SVM and DNN. The whole processes are implemented using Python 3.6 programming language in the TensorFlow framework. The proposed method provides accurate and scalable positioning services in different scenarios. The results also show that our proposed approach can provide scalable positioning, and 100% of the estimation accuracies are with errors less than 1 m and 1.9 m for indoor and outdoor positioning, respectively.


Author(s):  
S Mary Vasanthi ◽  
T Jayasree

The problem of classifying individual finger movements of one hand is focused in this article. The input electromyography signal is processed and eight time-domain features are extracted for classifying hand gestures. The classified finger movements are thumb, middle, index, little, ring, hand close, thumb index, thumb ring, thumb little and thumb middle and the hand grasps are palmar class, spherical class, hook class, cylindrical class, tip class and lateral class. Four state-of-the-art classifiers namely feed forward artificial neural network, cascaded feed forward artificial neural network, deep learning neural network and support vector machine are selected for this work to classify the finger movements and hand grasps using the extracted time-domain features. The experimental results show that the artificial neural network classifier is stabilized at 6 epochs for finger movement dataset and at 4 epochs for hand grasps dataset with low mean square error. However, the support vector machine classifier attains the maximum accuracy of 97.3077% for finger movement dataset and 98.875% for hand grasp dataset which is significantly greater than feed forward artificial neural network, cascaded feed forward artificial neural network and deep learning neural network classifiers.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Sign in / Sign up

Export Citation Format

Share Document