Influence of Specific SCM on Microstructure and Early Strength of Sustainable Cement Blends

Author(s):  
O. Rudic ◽  
J. Juhart ◽  
J. Tritthart ◽  
M. Krüger
Keyword(s):  
2017 ◽  
Author(s):  
Driton R. Kryeziu ◽  
Armend Mujaj ◽  
Visar Krelani ◽  
Mevlan Qafleshi ◽  
Fisnik Kadiu

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1611
Author(s):  
Gintautas Skripkiūnas ◽  
Asta Kičaitė ◽  
Harald Justnes ◽  
Ina Pundienė

The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.


2021 ◽  
Vol 11 (14) ◽  
pp. 6638
Author(s):  
Wenhao Zhao ◽  
Xuping Ji ◽  
Yaqing Jiang ◽  
Tinghong Pan

This work aims to study the effect of a nucleating agent on cement hydration. Firstly, the C-S-H crystal nucleation early strength agent (CNA) is prepared. Then, the effects of CNA on cement hydration mechanism, early strength enhancement effect, C-S-H content, 28-days hydration degree and 28-days fractal dimension of hydration products are studied by hydration kinetics calculation, resistivity test, BET specific surface area test and quantitative analysis of backscattered electron (BSE) images, respectively. The results show that CNA significantly improves the hydration degree of cement mixture, which is better than triethanolamine (TEA). CNA shortens the beginning time of the induction period by 49.3 min and the end time of the cement hydration acceleration period by 105.1 min than the blank sample. CNA increases the fractal dimension of hydration products, while TEA decreases the fractal dimension. CNA significantly improves the early strength of cement mortars; the 1-day and 3-days strength of cement mortars with CNA are more than the 3-days and 7-days strength of the blank sample. These results will provide a reference for the practical application of the C-S-H nucleating agent.


2021 ◽  
pp. 102485
Author(s):  
Cong Ma ◽  
Jiahua Peng ◽  
Haijun Zhou ◽  
Rui Zhou ◽  
Weixin Ren ◽  
...  

2015 ◽  
Vol 1119 ◽  
pp. 752-755
Author(s):  
Chang Zheng Sun ◽  
Zheng Wang

Optimization of mix proportion parameter ,Using ordinary raw materials makes a C80 high performance self-compacting concrete;By joining a homemade perceptual expansion agent, significantly improve the early strength of concrete and effective to solve the high strength of self-compacting concrete caused by gelled material consumption big contraction;Further study on the working performance of high-strength self-compacting concrete, age strength, analysis the influence factors of concrete are discussed.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2013 ◽  
Vol 641-642 ◽  
pp. 574-577 ◽  
Author(s):  
Ying Tao Li ◽  
Ling Zhou ◽  
Mao Jiang ◽  
Yu Zhang ◽  
Jun Shao

In this paper, the mechanical property experiments of concrete based on the seawater and sea sand have been carried in different raw materials preparation and different conservation environments. The results show that the early strength and late strength of concrete based on seawater and sea sand are better than concrete based on freshwater and sand. There is no significant strength decreased for concrete based on seawater and sea sand under accelerated alternating wet and dry conditions. For concrete based on seawater and sea sand mixed with admixture, the downward trend of late strength is significantly delayed, the late strength of concrete based on the seawater and sea sand mixed with slag gets the most obvious growth trend, while the late strength of seawater and sea sand concrete mixed with fly ash gets the largest increment.


2012 ◽  
Vol 34 (5) ◽  
pp. 650-662 ◽  
Author(s):  
Min-Hong Zhang ◽  
Jahidul Islam ◽  
Sulapha Peethamparan

Sign in / Sign up

Export Citation Format

Share Document