Trend Analysis of the Effects of Climate Change on the Pan Evaporation Rate in Sabah, Malaysia

2021 ◽  
pp. 13-22
Author(s):  
Min Yan Chia ◽  
Yuk Feng Huang ◽  
Chai Hoon Koo ◽  
Yeu Zhi Tan
2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Gizachew Kabite Wedajo ◽  
Misgana K. Muleta ◽  
Berhan Gessesse ◽  
Sifan A. Koriche

Abstract Background Understanding spatiotemporal climate and vegetation changes and their nexus is key for designing climate change adaptation strategies at a local scale. However, such a study is lacking in many basins of Ethiopia. The objectives of this study were (i) to analyze temperature, rainfall and vegetation greenness trends and (ii) determine the spatial relationship of climate variables and vegetation greenness, characterized using Normalized Difference in Vegetation Index (NDVI), for the Dhidhessa River Basin (DRB). Quality checked high spatial resolution satellite datasets were used for the study. Mann–Kendall test and Sen’s slope method were used for the trend analysis. The spatial relationship between climate change and NDVI was analyzed using geographically weighted regression (GWR) technique. Results According to the study, past and future climate trend analysis generally showed wetting and warming for the DRB where the degree of trends varies for the different time and spatial scales. A seasonal shift in rainfall was also observed for the basin. These findings informed that there will be a negative impact on rain-fed agriculture and water availability in the basin. Besides, NDVI trends analysis generally showed greening for most climatic zones for the annual and main rainy season timescales. However, no NDVI trends were observed in all timescales for cool sub-humid, tepid humid and warm humid climatic zones. The increasing NDVI trends could be attributed to agroforestry practices but do not necessarily indicate improved forest coverage for the basin. The change in NDVI was positively correlated to rainfall (r2 = 0.62) and negatively correlated to the minimum (r2 = 0.58) and maximum (r2 = 0.45) temperature. The study revealed a strong interaction between the climate variables and vegetation greenness for the basin that further influences the biophysical processes of the land surface like the hydrologic responses of a basin. Conclusion The study concluded that the trend in climate and vegetation greenness varies spatiotemporally for the DRB. Besides, the climate change and its strong relationship with vegetation greenness observed in this study will further affect the biophysical and environmental processes in the study area; mostly negatively on agricultural and water resource sectors. Thus, this study provides helpful information to device climate change adaptation strategies at a local scale.


2018 ◽  
Vol 11 (2) ◽  
pp. 420-433 ◽  
Author(s):  
Adem Yavuz Sönmez ◽  
Semih Kale

Abstract The main purpose of this study was to estimate possible climate change effects on the annual streamflow of Filyos River (Turkey). Data for annual streamflow and climatic parameters were obtained from streamflow gauging stations on the river and Bartın, Karabük, Zonguldak meteorological observation stations. Time series analysis was performed on 46 years of annual streamflow data and 57 years of annual mean climatic data from three monitoring stations to understand the trends. Pettitt change-point analysis was applied to determine the change time and trend analysis was performed to forecast trends. To reveal the relationship between climatic parameters and streamflow, correlation tests, namely, Spearman's rho and Kendall's tau were applied. The results of Pettitt change-point analysis pointed to 2000 as the change year for streamflow. Change years for temperature and precipitation were detected as 1997 and 2000, respectively. Trend analysis results indicated decreasing trends in the streamflow and precipitation, and increasing trend in temperature. These changes were found statistically significant for streamflow (p < 0.05) and temperature (p < 0.01). Also, a statistically significant (p < 0.05) correlation was found between streamflow and precipitation. In conclusion, decreasing precipitation and increasing temperature as a result of climate change initiated a decrease in the river streamflow.


2016 ◽  
Vol 13 (1) ◽  
pp. 1036 ◽  
Author(s):  
Necla Türkoğlu ◽  
Serhat Şensoy ◽  
Olgu Aydın

It is known that the increase in air temperature from 1980 to present has dramatically changed the phenological periods of the plants in a large part of the world. In this study, the relationships between phenological periods of wheat plant, apple and cherry trees planted large areas in Turkey and climate change were investigated. In this study, the climate and phenological data for 1971-2012 period belonging to the General Directorate of Meteorology were used. The correlation coefficients between temperature and phenological data were calculated, and their trends were examined using Mann-Kendall trend analysis. In Turkey, positive temperature anomalies have been observed since 1994 until present days. Negative relationships were found between phenological periods of apple, cherry and wheat and the average temperatures of February-May period when the plants grow faster. This situation shows that the plants shift their phenological periods to the earlier times in response to the increasing temperatures. The trend calculated for harvest times of apple, cherry, and wheat are -25, -22, -40 days/100 years respectively. It was calculated that an increase of 1.0ºC in the temperatures of the February-May period will shift the harvest times of apple, cheery and wheat by 5, 4 and 8 days earlier respectively. Özet1980’lerden günümüze hava sıcaklıklarındaki artış, Dünya’nın büyük bir bölümünde bitkilerin fenolojik dönemlerini önemli ölçüde değiştirmiştir. Bu çalışmada Türkiye’de geniş alanlar kaplayan buğday, elma ve kiraz bitkilerinin fenolojik dönemleri ile iklim değişikliği arasındaki ilişkiler araştırılmıştır. Çalışmada Meteoroloji Genel Müdürlüğü’ne ait 1971-2012 döneminin iklim ve fenolojik verileri kullanılmıştır. Sıcaklık ile fenolojik veriler arasındaki korelasyon katsayıları hesaplanmış ve Mann- Kendall trend analizi ile eğilimlerine bakılmıştır. Türkiye’de 1994 yılından bu yana pozitif sıcaklık anomalileri bulunmuştur. Elma, kiraz ve buğdayın fenolojik dönemleri ile bitki gelişiminin fazla olduğu şubat-mayıs ortalama sıcaklıkları arasında negatif ilişki saptanmıştır. Bu durum bitkilerin artan sıcaklıklara tepki olarak fenolojik dönemlerini erkene kaydırdıklarını göstermektedir. Elma, kiraz ve buğdayın hasat tarihleri için hesaplanan trend sırasıyla-25, -22, -40 gün/100 yıl şeklindedir. Şubat-mayıs arası sıcaklıklarda 1.0°C’lik artışın anılan bitkilerin hasat tarihlerini sırasıyla 5, 4 ve 8 gün erkene kaydıracağı hesaplanmıştır.


2019 ◽  
Author(s):  
Bingchuan Nie ◽  
Qingyong Wuxi ◽  
Jiachun Li ◽  
Feng Xu

Abstract. A methodology for assessing the storm tide inundation under TCI (tropical cyclone intensification) and SLR (sea level rise) is proposed, which integrates the trend analysis, numerical analysis and GIS-based analysis. In the trend analysis, the potential TCI and SLR can be estimated based on the long-term historical data of TC (tropical cyclone) and MSL (mean sea level) considering the non-stationary and spatially non-uniform effect; the numerical simulation is relied on the ADCIRC+SWAN model, which is capable of taking into account the tide-surge-wave coupling effect to improve the precision of water elevation prediction; the water elevation is then analyzed on the GIS platform, the potential inundation regions can be identified. Based on this methodology, a case study for the Southeast China coast, one of the storm surge prone areas in China, is presented. The results show that the high water elevation tends to occur in the bays and around the estuaries, the maximal water elevations caused by the typhoon wind of 100-year recurrence period can reach as high as 6.06 m, 5.82 m and 5.67 m around Aojiang, Feiyunjiang and Oujiang river estuaries, respectively. Non-stationary TCI and SLR due to climate change can further deteriorate the situation and enhance the risk of inundation there, i.e. the potential inundation area would expand by 108 % to about 798 km2 compared with the situation without considering TCI and SLR. In addition, the remotely sensed maps and inundation durations of the hardest hit regions are provided, which will aid the prevention and mitigation of storm tide inundation hazard and future coastal management there.


2018 ◽  
Vol 1 (1) ◽  
pp. 62-75
Author(s):  
Pradip Raj Poudel ◽  
Narayan Raj Joshi ◽  
Shanta Pokhrel

A study on effects of climate change on rice (Oryza sativa) production in Tharu communities of Dang district of Nepal was conducted in 2018A.D to investigate the perception and major adaptation strategies followed by Tharu farmers. The study areas were selected purposively. Cross-sectional data was collected using a household survey of 120 households by applying simple random sampling technique with lottery method for sample selection. Primary data were collected using semi-structured and pretested interview schedule, focus group discussion and key informants interview whereas monthly and annual time series data on temperature and precipitation over 21years (1996-2016) were collected from Department of Hydrology and Meteorology, Kathmandu as secondary data. Descriptive statistics and trend analysis were used to analyze the data. The ratio of male and female was found to be equal with higher literacy rate at study area than district. Most of the farmers depended on agriculture only for their livelihood where there was large variation in land distribution. Farmers had better access to FM/radio for agricultural extension information sources. The study resulted that Tharu farmers of Dang perceived all parameters of climate. Temperature and rainfall were the most changing component of climate perceived by farmers. The trend analysis of temperature data of Dang over 21 years showed that maximum, minimum and average temperature were increasing at the rate of 0.031°C, 0.021°C and 0.072°C per year respectively which supports the farmers perception whereas trend of rainfall was decreased with 7.56mm per year. The yearly maximum rainfall amount was increased by 1.15mm. The production of local indigenous rice varieties were decreasing while hybrid and improved rice varieties were increasing. The district rice production trend was increasing which support the farmer’s perception. The study revealed that there were climate change effects on paddy production and using various adaptation strategies to cope in Dang district.


Sign in / Sign up

Export Citation Format

Share Document