Advanced Procedure for Making Vibro Motor Coupling of Basket Crusher by Welding and Plasma Cutting

2021 ◽  
pp. 339-360
Author(s):  
Aleksandra Mitrović ◽  
Đorđe Matić ◽  
Zorana Golubović ◽  
Aleksandar Sedmak
Keyword(s):  
2020 ◽  
Vol 50 (3) ◽  
pp. 159-165 ◽  
Author(s):  
S. V. Anakhov ◽  
B. N. Guzanov ◽  
A. V. Matushkin ◽  
N. B. Pugacheva ◽  
Yu. A. Pykin

1999 ◽  
Vol 122 (1) ◽  
pp. 141-145 ◽  
Author(s):  
M. Chiarelli ◽  
A. Lanciotti ◽  
M. Sacchi

The paper describes the results of a research programme, carried out at the Department of Aerospace Engineering of the University of Pisa, for the assessment of the influence of plasma cutting on the physical and mechanical properties of Fe510 D1, a low carbon steel widely used in carpentry. The activity started by observing that several industries rework plasma cut edges, particularly in the case of fatigue structures, in spite of the good quality of the plasma cut edges in a fully automatic process. Obviously, reworking is very expensive and time-consuming. Comparative fatigue tests demonstrated that the fatigue resistance of plasma cut specimens in Fe510 steel was fully comparable to that of milled specimens, as the consequence of the beneficial residual stresses which formed in the plasma cut edges. [S0094-4289(00)02201-5]


1986 ◽  
Vol 2 (01) ◽  
pp. 8-17
Author(s):  
Harry Hooper

The methods presently used by U.S. shipbuilders for preparing, nesting and marking plate parts are discussed. The use of existing computer technology is explored as a means for improving these operations by conserving plate and reducing operating costs. Appendices are included which list the advantages and disadvantages of both the oxy-flame and plasma cutting processes, the use of special sized plate in hull construction, and the basic features of a computerized parts nesting system.


Author(s):  
H.M. Magid

Purpose: In this study, plasma arc cutting (PAC) is an industrial process widely used for cutting various away types of metals in several operating conditions. Design/methodology/approach: It is carried out a systematic or an authoritative inquiry to discover and examine the fact, the plasma cutting process is to establish the accuracy and the quality of the cut in this current paper assessed a good away to better the cutting process. Findings: It found that the effect of parameters on the cutting quality than on the results performed to accomplish by statistical analysis. Research limitations/implications: The objective of the present work paper is to achieve cutting parameters, thus the quality of the cutting process depends upon the plasma gas pressure, scanning speed, cutting power, and cutting height. Practical implications: The product of the plasma cutting process experimentally has been the quality of the cutting equipment that was installed to monitor kerf width quality by exam the edge roughness, kerf width, and the size of the heat-affected zone (HAZ). Originality/value: The results reveal that were technically possessed of including all the relevant characteristics, then a quality control for the cutting and describe the consequence of the process parameters.


2014 ◽  
Author(s):  
Jerald E. Jones ◽  
Valerie L. Rhoades ◽  
Mark D. Mann ◽  
Todd Holverson

A new cutting process, a hybrid system, uses induction heating to heat the metal ahead of the plasma cutting torch. The process has demonstrated the ability to plasma cut steel parts at speeds of up to 4X the speed of the plasma torch without the induction heating. Although the total heat input per unit time is greater, because of the increase in speed, the heat which is conducted into the cut pieces is less. This causes less potential metallurgical damage, less potential distortion, and reduced coating damage and reduced emissions during cutting, in comparison to the plasma cutting process without the induction heating. The initial development was primarily for use in cutting nuclear submarine and aircraft carrier hulls, for scrapping after decommissioning. The process has been demonstrated cutting steel plates and can be used in ship production as well. The primary motivation of the SBIR project was to reduce the heating of the cut pieces, in order to reduce the particulate matter (PM) emissions which occur when coated ship hull material is cut. An induction coil is positioned in front of the plasma cutting torch, to bring the material to an elevated temperature of at least 1600° F, before the plasma is applied to the metal surface. Induction heating testing has shown that the 35 kW induction system can maintain the 1600° F surface temperature at travel speeds of above 220 inches per minute on steel as thick as 3 inches. Once the steel is at that temperature an air plasma torch can cut the metal much faster than cutting cold steel.


2015 ◽  
Vol 719-720 ◽  
pp. 46-49 ◽  
Author(s):  
Ginka Ranga Janardhana ◽  
Mani Senthil Kumar ◽  
B. Dhanasekar

The plasma cutting technology has been emerged as a developing technology which finds tremendous potential in fabrication and metal cutting industries. Thus for the cutting operation, the electrode inside the plasma torch plays a vital role for the plasma arc generation. The temperature of the arc is very high and at the electrode is around 3500°C. The cutting torch requires proper cooling system in order to prevent the electrode from quick wear due to the existence of high thermal gradient. The presented work aimed to study the impact of three coolants propylene glycol, ethylene glycol and de-ionized water flow over the electrode life. The experimental setups were arranged to study the heat transfer capabilities of the three coolants for different flow values and aimed to achieve the optimal flow rates for the efficient heat removal. The electrode life test trials were conducted to measure the electrode life for the flow values of three coolants in the temperature rise test. The optimal flow rates arrived from temperature rise test and the electrode life measured from life test are compared for the three coolant cases considered.


Sign in / Sign up

Export Citation Format

Share Document