A Web-based Telepsychology Platform Prototype Using Cloud Computing and Deep Learning Tools

2021 ◽  
pp. 97-108
Author(s):  
Diego Pérez-Hernández ◽  
Nieves Pavón-Pulido ◽  
J. A. López-Riquelme ◽  
J. J. Feliú Batlle
Author(s):  
Shruti Makarand Kanade

 Cloud computing is the buzz word in today’s Information Technology. It can be used in various fields like banking, health care and education. Some of its major advantages that is pay-per-use and scaling, can be profitably implemented in development of Enterprise Resource Planning or ERP. There are various challenges in implementing an ERP on the cloud. In this paper, we discuss some of them like ERP software architecture by considering a case study of a manufacturing company.


Author(s):  
Xiangbing Zhao ◽  
Jianhui Zhou

With the advent of the computer network era, people like to think in deeper ways and methods. In addition, the power information network is facing the problem of information leakage. The research of power information network intrusion detection is helpful to prevent the intrusion and attack of bad factors, ensure the safety of information, and protect state secrets and personal privacy. In this paper, through the NRIDS model and network data analysis method, based on deep learning and cloud computing, the demand analysis of the real-time intrusion detection system for the power information network is carried out. The advantages and disadvantages of this kind of message capture mechanism are compared, and then a high-speed article capture mechanism is designed based on the DPDK research. Since cloud computing and power information networks are the most commonly used tools and ways for us to obtain information in our daily lives, our lives will be difficult to carry out without cloud computing and power information networks, so we must do a good job to ensure the security of network information network intrusion detection and defense measures.


2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


Author(s):  
Hanaa Torkey ◽  
Elhossiny Ibrahim ◽  
EZZ El-Din Hemdan ◽  
Ayman El-Sayed ◽  
Marwa A. Shouman

AbstractCommunication between sensors spread everywhere in healthcare systems may cause some missing in the transferred features. Repairing the data problems of sensing devices by artificial intelligence technologies have facilitated the Medical Internet of Things (MIoT) and its emerging applications in Healthcare. MIoT has great potential to affect the patient's life. Data collected from smart wearable devices size dramatically increases with data collected from millions of patients who are suffering from diseases such as diabetes. However, sensors or human errors lead to missing some values of the data. The major challenge of this problem is how to predict this value to maintain the data analysis model performance within a good range. In this paper, a complete healthcare system for diabetics has been used, as well as two new algorithms are developed to handle the crucial problem of missed data from MIoT wearable sensors. The proposed work is based on the integration of Random Forest, mean, class' mean, interquartile range (IQR), and Deep Learning to produce a clean and complete dataset. Which can enhance any machine learning model performance. Moreover, the outliers repair technique is proposed based on dataset class detection, then repair it by Deep Learning (DL). The final model accuracy with the two steps of imputation and outliers repair is 97.41% and 99.71% Area Under Curve (AUC). The used healthcare system is a web-based diabetes classification application using flask to be used in hospitals and healthcare centers for the patient diagnosed with an effective fashion.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4045
Author(s):  
Alessandro Sassu ◽  
Jose Francisco Saenz-Cogollo ◽  
Maurizio Agelli

Edge computing is the best approach for meeting the exponential demand and the real-time requirements of many video analytics applications. Since most of the recent advances regarding the extraction of information from images and video rely on computation heavy deep learning algorithms, there is a growing need for solutions that allow the deployment and use of new models on scalable and flexible edge architectures. In this work, we present Deep-Framework, a novel open source framework for developing edge-oriented real-time video analytics applications based on deep learning. Deep-Framework has a scalable multi-stream architecture based on Docker and abstracts away from the user the complexity of cluster configuration, orchestration of services, and GPU resources allocation. It provides Python interfaces for integrating deep learning models developed with the most popular frameworks and also provides high-level APIs based on standard HTTP and WebRTC interfaces for consuming the extracted video data on clients running on browsers or any other web-based platform.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 357
Author(s):  
Dae-Hyun Jung ◽  
Na Yeon Kim ◽  
Sang Ho Moon ◽  
Changho Jhin ◽  
Hak-Jin Kim ◽  
...  

The priority placed on animal welfare in the meat industry is increasing the importance of understanding livestock behavior. In this study, we developed a web-based monitoring and recording system based on artificial intelligence analysis for the classification of cattle sounds. The deep learning classification model of the system is a convolutional neural network (CNN) model that takes voice information converted to Mel-frequency cepstral coefficients (MFCCs) as input. The CNN model first achieved an accuracy of 91.38% in recognizing cattle sounds. Further, short-time Fourier transform-based noise filtering was applied to remove background noise, improving the classification model accuracy to 94.18%. Categorized cattle voices were then classified into four classes, and a total of 897 classification records were acquired for the classification model development. A final accuracy of 81.96% was obtained for the model. Our proposed web-based platform that provides information obtained from a total of 12 sound sensors provides cattle vocalization monitoring in real time, enabling farm owners to determine the status of their cattle.


Sign in / Sign up

Export Citation Format

Share Document